Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(4^9\cdot36+64^4\right)\div\left(16^4\cdot100\right)\)
\(A=\left[4^9\cdot4\cdot9+\left(4^3\right)^4\right]\div\left[\left(4^2\right)^4\cdot25\cdot4\right]\)
\(A=\left(4^{10}\cdot9+4^{4\cdot3}\right)\div\left[4^{2\cdot4}\cdot25\cdot4\right]\)
\(A=\left(4^{10}\cdot9+4^{12}\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=\left(4^{10}\cdot9+4^{10}\cdot4^2\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=\left(4^{10}\cdot9+4^{10}\cdot16\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=4^{10}\cdot\left(9+16\right)\div\left(4^8\cdot25\cdot4\right)\)
\(A=4^{10}\cdot25\div\left(4^8\cdot25\cdot4\right)\)
\(A=\frac{4^{10}\cdot25}{4^8\cdot25\cdot4}\)
\(A=\frac{4^2\cdot1}{1\cdot1\cdot4}\)
\(A=4\)
\(B=72^3\cdot54^2\div108^4\)
Ta lần lượt phần tích \(72,54,108\) ra thừa số nguyên tố.
\(72=2^3\cdot3^2\).
\(54=2\cdot3^3\)
\(108=2^2\cdot3^3\)
\(\Rightarrow B=\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2\div\left(2^2\cdot3^3\right)^4\)
\(B=\left(2^3\right)^3\cdot\left(3^2\right)^3\cdot2^2\cdot\left(3^3\right)^3\div\left[\left(2^2\right)^4\cdot\left(3^3\right)^4\right]\)
\(B=2^{3\cdot3}\cdot3^{2\cdot3}\cdot2^2\cdot3^{3\cdot2}\div\left(2^{2\cdot4}\cdot3^{3\cdot4}\right)\)
\(B=2^9\cdot3^6\cdot2^2\cdot3^6\div\left(2^8\cdot3^{12}\right)\)
\(B=\left(2^9\cdot2^2\div2^8\right)\cdot\left(3^6\cdot3^6\div3^{12}\right)\)
\(B=2^{9+2-8}\cdot3^{6+6-12}\)
\(B=2^3\cdot1\)
\(B=8\)
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
\(A=\left(x-1\right)^2-3\)
a) Với x = -2, ta có:
\(A=\left(-2-1\right)^2-3=6\)
b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: \(MIN_A=3\Leftrightarrow x=1\)
Khong chac dau nhe .-.
A=(x-1)2-3
Với x=-2
Ta có:
A=(-2-1)2-3
A=(-3)2-3
A=9-6
A=3
Vậy A=3 với x=-2
b)Tính GTNN của biểu thức A
Để biểu thức A đạt GTNN <=>(x-1)2
<=>(x-1) đạt GTNN
<=>x=1
Vậy với x =1 thì biểu thức A đạt GTNN
\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.16}{3^9.16}=3\)
\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.78}{2^8.104}=\frac{2^{10}.26.3}{2^8.2^2.26}=3\)
\(C=\frac{72^3.52^4}{108^4}=\frac{\left(3^2.2^3\right)^3.\left(13.2^2\right)^4}{\left(3^3.2^2\right)^4}=\frac{3^6.2^9.13^4.2^8}{3^{12}.2^8}=\frac{2^9.13^4}{3^6}\)
\(D=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{3^{29}\left(33-1\right)}{2^2.3^{28}}=\frac{3^{29}.2^5}{2^2.3^{28}}=3.8=24\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)