K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có ( 5x + 6y ) ( 5x - 6y) có dạng (a-b)(a+b) (hằng đẳng thức số 3) nên

( 5x + 6y ) ( 5x - 6y)

=(5x)2-(6y)2

=25x2-36y2

27 tháng 4 2016

khó quá ,mình mới học lớp 5 thôi à

27 tháng 4 2016

thế nhảy vào toán lớp 8 làm gì

NM
2 tháng 11 2021

ta có:

undefined

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

13 tháng 12 2021

Answer:

\(B=-5x^2-5y^2+8x-6y-1\)

\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)

\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)

Có:

\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)

Do vậy:

\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)

Vậy "=" xảy ra khi:

\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

\(C=-5x^2-2xy-2y^2+14x+10y-1\)

\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)

\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)

\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)

Có:

\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)

Do vậy:

\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

a: \(C=2\left(x^2+\dfrac{5}{2}x-\dfrac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{33}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2-\dfrac{33}{8}>=-\dfrac{33}{8}\)

Dấu '=' xảy ra khi x=-5/4

b: \(=x^2+4x+4+y^2-6y+9-6\)

\(=\left(x+2\right)^2+\left(y-3\right)^2-6>=-6\)

Dấu '=' xảy ra khi x=-2 và y=3

b: Tham khảo:

undefined

a: \(P=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi x=5/2

7 tháng 10 2016

vậy x=1

      y=-1

7 tháng 10 2016

(2x+2y)^2+(x-1)^2+(y+1)^2=0

(2x+2y)^2=0và (x-1)^2=0 và (y+1)^2 cũng =0

(x-1)^2=0

x-1=0

x=1

(y+1)^2

y+1=0

y=-1

x=1

y=-1 

nhaaaaaaaaaaaaaaaaaaaaa