Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
a ) Theo bài ra ta có ;
a+ b = a.b = a : b
Với a . b = a : b => a .b. b = a => b^2 = a : a= > b^2 = 1 => b = 1 hoặc -1
(+) b = 1 => a. 1 = a + 1 => a = a+ 1 => 0a = 1 ( laoij )
(+) b = -1 => a.-1 = a + (-1) => -a = a- 1 => -2a = -1 => a= -1/2
VẬy b= -1 và a = 1/2
B) tương tự
a . theo đề bài :
a + b = a .b = a : b
a . b = a : b => a .b .b = a => b^2 = a : a = > b = 1 hoặc b -1
Với b = 1 thì a . 1 = a + 1 = > a = a + 1 ( loại )
Với b = -1 thì a . -1 = a + -1 => -a = a + -1 => -2a = -1 => a = 1/2
b ,c tương tự nhe
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)\(\left(x;y\ne0\right)\)
=> \(\frac{x+y}{xy}=\frac{1}{2}\)
=> 2(x + y) = xy
=> 2x + 2y = xy
=> xy - 2x - 2y = 0
=> xy - 2x - 2y + 4 = 4
=> x(y - 2) - 2(y - 2) = 4
=> (x - 2)(y - 2) = 4
Lập bảng xét các trường hợp
x - 2 | 1 | 4 | -4 | -1 | 2 | -2 |
y - 2 | 4 | 1 | -1 | -4 | 2 | -2 |
x | 3 | 6 | -2 (loại) | 1 | 4 | 0(loại) |
y | 6 | 3 | 1 | -2(loại) | 4 | 0(loại) |
Vậy các cặp (x;y) thỏa mãn là (3;6) ; (6;3) ; (4;4)