Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (1 - 2/3 + 4/3) - (4/5 - 1) + (7/5 + 2)
A= (3/3 - 2/3 + 4/3) - (4/5 - 5/5) + (7/5 + 10/5)
A= 5/3 + 1/5 + 17/5
A= 5/3 +18/5
A= 25/15 + 54/15
A= 79/15
B= (-3 + 3/4 - 1/3 ) : (5 + 2/5 - 2/3)
B= (-36/12 + 9/12 - 4/12) : (75/15 + 6/15 - 10/15)
B= -31/12 : 71/15
B= -155/284
C= (3/5 - 4/5 ) . (2/7 - 3/14) - (5/9 - 7/27) . (1 - 3/5) + (1 - 11/12) . (1-11/12)
C= -1/5 . 1/14 - 8/27 . 2/5 + 1/12 . 1/12
C=-1/70 - 16/135 + 1/144
C=-216/15120 - 1792/15120 + 105/15120
C=-1903/15120
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
1) Ta có: \(\left|9y-1\right|+\left(2x+3\right)^2=0\)
Mà \(\hept{\begin{cases}\left|9y-1\right|\ge0\\\left(2x+3\right)^2\ge0\end{cases}}\left(\forall x,y\right)\)
=> \(\left|9y-1\right|+\left(2x+3\right)^2\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|9y-1\right|=0\\\left(2x+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}9y-1=0\\2x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
2)
a) Ta có: \(\left[\left(-\frac{1}{3}\right)^7\right]^4=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
và \(\left[\left(-\frac{1}{2}\right)^{14}\right]^2=\left(\frac{1}{2}\right)^{28}=\frac{1}{2^{28}}\)
Vì \(\frac{1}{3^{28}}< \frac{1}{2^{28}}\Rightarrow\left[\left(-\frac{1}{3}\right)^7\right]^4< \left[\left(-\frac{1}{2}\right)^{14}\right]^2\)
b) Ta có: \(\left(-\frac{2}{3}\right)^{12}=\left[\left(-\frac{2}{3}\right)^2\right]^6=\left(\frac{4}{9}\right)^6\)
Ta thấy \(0< \frac{4}{9}< 1\)\(\Rightarrow\left(\frac{4}{9}\right)^6>\left(\frac{4}{9}\right)^7\)
\(\Rightarrow\left(-\frac{2}{3}\right)^{12}>\left(\frac{4}{9}\right)^7\)