K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

vô dây hộ mk , mk vừa làm  h đỡ viết , cx câu b ý

https://olm.vn/hoi-dap/question/1289396.html

16 tháng 8 2018

Ta có: \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Rightarrow\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)

\(\Rightarrow\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)

\(\Rightarrow\left(x^3-x^2+2x-2\right)\left(x^3-x^2-2x+2\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x-1\right)\left(x^2-2\right)\left(x-1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x-1\right)^2\left(x^2-2\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\sqrt{2}orx=-\sqrt{2}\end{cases}}\)

Vậy x=1 hoặc \(x=\sqrt{2}\)hoặc x = \(-\sqrt{2}\)

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

9 tháng 10 2016

a/ Đặt x2 = a thì pt thành

a3 + a- a = o

<=> a(a+ a - 1) = 0

b/ x4 - 3x3 + 4x2 - 3x + 1 = 0

<=> (x- 2x3 + x2) + (- x3 + 2x2 - x) + (x2 - 2x + 1) = 0

<=> (x - 1)2( x2 - x + 1) = 0

<=> x - 1 = 0

<=> x = 1

6 tháng 6 2015

+) Tính giá trị của  x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)

=> (-2 + \(\sqrt{5}\)2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1   = 0 

Vậy x2 + 4x - 1  = 0 tại x = -2 + \(\sqrt{5}\)

+) A = 3x3.(x2 + 4x  - 1 ) - 5x3 - 23x2 - 7x + 1

       = 3x3.(x2 + 4x  - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1

      = (3x- 5x).(x2 + 4x  - 1 ) - 3.(x2 + 4x -1) - 2 =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2

Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2 

+) A =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2 chia cho (x2 + 4x  - 1 ) dư - 2

27 tháng 6 2016

Dạng tổng quát:

Muốn tính giá trị của f(a), ta tách : f(a) = g(a).t(a) + h(a) sao cho g(a) = 0. Khi đó ta có: f(a) = h(a) với h(x) là phần dư của phép chia f(x) cho g(x).

Khi làm nhiều ta nhẩm được pt bậc hai nhận nghiệm \(-2+\sqrt{5}\) là pt \(x^2+4x-1=0\)