Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Bạn chỉ cần nhân vào , rút gọn rồi thay giá trị của x vào thôi .
Còn khó quá không biết làm thì thay luôn giá trị của x vào thôi .
1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)
\(< =>6x^2+31x+18-6x^2-13x-2=7\)
\(< =>18x+16=7\)
\(< =>18x=7-16\)
\(< =>18x=-9\)
\(< =>x=-\frac{9}{18}=-\frac{1}{2}\)
Bài 1:
\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)
\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)
\(Q=\left(2x^2+6x\right)^2-1\)
\(Q=99^2-1\)
\(Q=9800\)
Bài 2:
Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)
\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(A=2^{128}-1^2+1\)
\(A=2^{128}\left(đpcm\right)\)
Bài 3:
Để C là số nguyên thì x2 - 3 ⋮ x - 2
<=> x (x - 2) + 2x - 3 ⋮ x - 2
mà x (x - 2) ⋮ x - 2
=> 2x - 3 ⋮ x - 2
<=> 2 (x - 2) + 3 ⋮ x - 2
mà 2 (x - 2) ⋮ x - 2
=> 3 ⋮ x - 2
=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy x thuộc { -1; 1; 3; 5 }
Ta có \(A=3x\left(5x^2-4\right)+x^2\left(8-15x\right)-8x^2\)
\(A=15x^3-12x+8x^2-15x^3-8x^2\)
\(A=-12x\)
và \(\left|x\right|=3\)
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Thay x = 3 vào biểu thức \(A=-12x\), ta có: -12. 3 = -36
Thay x = -3 vào biểu thức \(A=-12x\), ta có: -12 (-3) = 36
Vậy với \(\left|x\right|=3\)thì \(A=\pm36\).
\(1,\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)^2=0\)
\(\Rightarrow\left(x+2\right)^3+\left(x+2\right)^2=0\)
\(\Rightarrow\left(x+2\right)^2.\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Vậy....
Bạn ơi (x+2)(x2-2x+4) = x3+23 mà