Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
12=1.12=2.6=3.4=4.3=6.2.12.1
và: 2x-1 là Ư lẻ của 12
=> 2x-1 E {1;3}
+) 2x-1=1=>2x=1+1=2
=>x=1
=>y+3=12=>y=9
Vậy x=1;y=9
+) 2x-1=3=>2x=3+1=4=>x=4:2=2
=> y+3=12:3=4
=>y=1
Vậy y=1;x=2
\(n^2+7n+2=n\left(n+4\right)+3\left(n+4\right)-10\)
Để biểu thức chia hết thì \(n+4\inƯ\left(10\right)\)
Bạn tự giải tiếp nk.
Bài 1:
\(\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+...+\frac{4}{306}\)
\(=4\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{306}\right)\)
\(=4\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{17\cdot18}\right)\)
\(=4\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{17}-\frac{1}{18}\right)\)
\(=4\cdot\left(\frac{1}{3}-\frac{1}{18}\right)\)
\(=4\cdot\left(\frac{6}{18}-\frac{1}{18}\right)\)
\(=4\cdot\frac{5}{18}\)
\(=\frac{10}{9}\)
Bài 2 :
\(\left(3x-4\right)-\left(6x+7\right)=8\)
\(3x-4-6x-7=8\)
\(\left(3x-6x\right)-\left(4+7\right)=8\)
\(-3x-11=8\)
\(-3x=8+11\)
\(-3x=19\)
\(x=19:\left(-3\right)\)
\(x=\frac{-19}{3}\)
Vậy \(x=\frac{-19}{3}\)
b ) \(\left(\frac{4}{5}x+3\right):\left(-4\right)=\frac{1}{2}\)
\(\frac{4}{5}x+3=\frac{1}{2}\cdot\left(-4\right)\)
\(\frac{4}{5}x+3=-2\)
\(\frac{4}{5}x=\left(-2\right)-3\)
\(\frac{4}{5}x=-5\)
\(x=\left(-5\right):\frac{4}{5}\)
\(x=\left(-5\right)\cdot\frac{4}{5}\)
\(x=-4\)
Vậy \(x=-4\)
k nha !
\(\frac{4}{12}\)+\(\frac{4}{20}\)+...+\(\frac{4}{306}\)=\(\frac{4}{3.4}\)+\(\frac{4}{4.5}\)+...+\(\frac{4}{17.18}\)=4(\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\))
=4(\(\frac{1}{3}\)-\(\frac{1}{8}\))=4.\(\frac{5}{24}\)=\(\frac{5}{6}\)
1)chia 3 dư 1 => x+2 chia hết cho 3
chia 4 dư 2 => x+2 chia hết cho 4
chia 5 dư 3 => x+2 chia hết cho 5
chia 6 dư 4=> x+2 chia hết cho 6
BC(3,4,5,6)={60;120;...}
x+2=60 x+2=120
x=58 x=118
1,
x10 = x
=> x10 - x = 0
=> x(x9 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^9=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
KL: x thuộc {1; 0}
2,
\(S=2+2^2+2^3+...+2^{2016}\)
=> \(2S=2^2+2^3+2^4+...+2^{2017}\)
=> \(2S-S=\left(2^2+2^3+2^4+...+2^{2017}\right)-\left(2+2^2+2^3+...+2^{2016}\right)\)
=> \(S=2^{2017}-2\)
Bài 1:
x10 = x => x= { -1;1}
Bài 2:
\(S=2+2^2+2^3+...+2^{2016}\)
\(2S=2^2+2^3+2^4+2^{2017}\)
\(2S-S=2^{2017}-2\)
Vậy \(S=2^{2017}-2\)