\(\left|2x+3\right|+\left|2x-1\right|=\dfrac{8}{3.\left(x+1\right)^2+2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) ) 

... 

22 tháng 7 2018

c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)

=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)

=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)

=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)

22 tháng 7 2018

d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)

=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)

=> 2x-1 = \(\dfrac{-2}{3}\)

=> x= \(\dfrac{1}{6}\)

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

13 tháng 8 2017

Bài 1:

a) \(x^2-3=1\)

\(\Rightarrow x^2=1+3=4\)

\(\Rightarrow x=\pm2\)

b)\(2x^3+12=-4\)

\(\Rightarrow2x^3=-4-12=-16\)

\(\Rightarrow x^3=-8\)

\(\Rightarrow x=-2\)

c)\(\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{7}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 8 2017

a) \(x^2-3=1\Rightarrow x^2=4\Rightarrow x=\pm2\)

b) \(2x^3+12=-4\Rightarrow2x^3=-16\)

\(\Rightarrow x^3=-\dfrac{16}{2}=-8=-2^3\)

\(\Rightarrow x=-2\)

c) \(\left(2x-3\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d,h,i,k cững tương tự....

1 tháng 7 2017

a) ( x + 5 )3 = -64

x + 5 = - 4

x = - 4 - 5

x = -9

b) (2x - 3)2=9

2x - 3 = 3

2x = 3+3

2x = 6

x = 6 : 2

x = 3

e) \(\dfrac{8}{2x}=4\)

=> 4 . 2x = 8

8x =8

x = 8 : 8

x = 1

g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)

=> x = 2

h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)

\(\dfrac{1}{4}.x=\dfrac{1}{32}\)

x = \(\dfrac{1}{32}:\dfrac{1}{4}\)

x = \(\dfrac{1}{8}\)

i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)

\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)

\(x=\dfrac{-1}{27}\)

2 tháng 7 2017

a) (x + 5)3 = -64

=> (x + 5)3 = (-4)3

x + 5 = -4

x = -4 - 5

x = -9

b) (2x - 3)2 = 9

=> (2x - 3)2 = (\(\pm\)3)2

=> 2x - 3 = 3 hoặc 2x - 3 = -3

*2x - 3 = 3

2x = 3 + 3

2x = 9

x = \(\dfrac{9}{2}\)

*2x - 3 = -3

2x = -3 + 3

2x = 0

x = 0 : 2

x = 0

Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)

c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)

=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)

\(\dfrac{x}{2}=8\)

x = 8 : 2

x = 4

d) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

=> (-2)n . (-2)2= (-2)5

(-2)n = (-2)5 : (-2)2

(-2)n = (-2)3

Vậy n = 3

e) \(\dfrac{8}{2x}=4\)

=> 2x . 4 = 8

2x = 8 : 4

2x = 2

x = 1

g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)

2x - 1 = 3

2x = 3 + 1

2x = 4

x = 4 : 2

x = 2

h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)

\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)

\(x=\left(\dfrac{1}{2}\right)^3\)

\(x=\dfrac{1}{8}\)

i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)

\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)

\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)

\(x=\left(\dfrac{-1}{3}\right)^3\)

\(x=\dfrac{-1}{27}\).

NV
6 tháng 1 2019

\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

Lại có: \(3\left(x+1\right)^2+2\ge2\Rightarrow\dfrac{8}{3\left(x+1\right)^2+2}\le\dfrac{8}{2}=4\)

\(\Rightarrow VP\le4\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(2x+3\right)\left(1-2x\right)\ge0\\3\left(x+1\right)^2+2=2\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

30 tháng 10 2017

\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)

\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)

\(\Rightarrow x=\dfrac{100}{401}\)

24 tháng 7 2017

|2x-1|=1,5

TH(1)2x-1=1,5

2x =1,5+1

2x =2,5

x =2,5 :2

x =1,25

TH(2) 2x-1=-1,5

2x =-1,5+1

2x =-0,5

x =-0,5:2

x =-0,25

các câu khác cứ tương tự bạn nhé

24 tháng 7 2017

b) \(7,5-\left|5-2x\right|=-4,5\)

\(\left|5-2x\right|=7,5+4,7\)

\(\left|5-2x\right|=12\)

th1 :\(5-2x=12\)

\(2x=5-12\)

\(2x=-7\)

\(x=-7:2\)

\(x=-3,5\)

th2: \(5-2x=-12\)

\(2x=5+12\)

\(2x=17\)

\(x=17:2\)

\(x=8,5\)

c) \(-3+\left|x\right|=-1\)

\(\left|x\right|=-1+3\)

\(\left|x\right|=2\)

th1: \(x=-2\)

th2 : \(x=2\)

d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)

\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)

th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)

\(x=\dfrac{7}{3}-\dfrac{1}{2}\)

\(x=\dfrac{11}{6}\)

th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)

\(x=\dfrac{7}{3}+\dfrac{1}{6}\)

\(x=\dfrac{-5}{2}\)

e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{9}{14}\)

th1 :\(x+1=\dfrac{9}{14}\)

\(x=\dfrac{9}{14}-1\)

\(x=\dfrac{-5}{14}\)

th2 : \(x+1=\dfrac{-9}{14}\)

\(x=\dfrac{-9}{14}-1\)

\(x=\dfrac{-5}{14}\)