Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Rightarrow\text{ }3\cdot x^{2017}=x^{2017}-2\)
\(\Rightarrow\text{ }3\cdot x^{2017}-x^{2017}+2=0\)
\(\Rightarrow\text{ }x^{2017}\left(3-1\right)+2=0\)
\(\Rightarrow\text{ }x^{2017}\cdot2+2=0\)
\(\Rightarrow\text{ }x\left(x^{2017}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{2017}+1=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x^{2017}=-1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\text{Vậy }x\in\left\{0\text{ ; }-1\right\}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017
Bài làm:
a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)
\(=-\frac{1}{5}x^6y^3z^3\)
b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:
\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)
a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)
b) Với x = -1 ; y = -2 , z = 3
Thế vào ba đơn thức trên và đơn thức tích ta được :
\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)
\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)
\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)
\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)
(\(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\)).\(\frac{1-3-5-...-49}{89}\)
= \(\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{45.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right).\frac{1-\frac{24.\left(49+3\right)}{2}}{89}\)
\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right).\left(-7\right)\)
\(=-\frac{9}{28}\)
Có chỗ ghi nhầm 44 thành 45. Tự sửa nhé
Bài 2/ a/
|2x + 3| = x + 2
Điều kiện \(x\ge-2\)
Với x < - 1,5 thì ta có
- 2x - 3 = x + 2
<=> 3x = - 5
<=> \(x=-\frac{5}{3}\)
Với \(x\ge-1,5\)thì ta có
2x + 3 = x + 2
<=> x = - 1
vì \(\left(x+1\right)< \left(x+2\right)\)
để \(\left(x+1\right).\left(x+2\right)>0\)
=> \(\hept{\begin{cases}x+1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>-2\end{cases}}}\)
=> ko có giá trị x t/mãn
b)
để \(\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\\left(x+\frac{2}{3}\right)\end{cases}>0}hay\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}hay\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
vậy \(x>2,x< -\frac{2}{3}\)
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow3x^{2017}=x^{2017}-2\)
\(\Leftrightarrow2x^{2017}=-2\)
\(\Leftrightarrow x^{2017}=-1\)
\(\Leftrightarrow x=-1\)
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow\frac{2x^{2017}+2}{3}=0\)
\(\Leftrightarrow2x^{2017}+2=0.3\)
\(\Leftrightarrow2x^{2017}+2=0\)
\(\Leftrightarrow2x^{2017}=0-2\)
\(\Leftrightarrow2x^{2017}=-2\)
\(\Leftrightarrow x^{2017}=\left(-1\right)^{\frac{1}{2017}}\)
x = 1