K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a)x=1;2;-2(bạn nên tự giải)

b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x

=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)

=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x

=>x = 1/7680

c)=>4x - 2x = 6x - 3x

=>2x (2x-1)= 3x(2x-1)

=> 2x = 3x

=>x = 0

21 tháng 6 2018

ak mình nhầm

21 tháng 6 2022

\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)

\(\Rightarrow2x=\dfrac{1}{5}\)

\(\Rightarrow x=\dfrac{1}{10}\)

\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=2\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)

\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)

\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)

\(\Leftrightarrow x=-\dfrac{49}{8}\)

\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)

\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)

\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)

\(\Leftrightarrow x=\dfrac{413}{160}\)

 

13 tháng 7 2022

a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}

2 \cdot x=\dfrac{1}{5}

x=\dfrac{1}{5}: 2

 x=\dfrac{1}{10}
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}

-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}
x=2+1 \dfrac{3}{5}

 x=3 \dfrac{3}{5}
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x=\dfrac{-3}{8}: \dfrac{3}{49}
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)

\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}
 

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=\frac{1.2.3....31}{2.4.6.8...64}\)

Xét mẫu số:

\(2.4.6.8.....62.64=(2.1)(2.2)(2.3)(2.4)....(2.31)(2.32)\)

\(=2^{32}(1.2.3....31.32)\)

Suy ra:

\(\text{VT}=\frac{1.2.3....31}{2^{32}.(1.2.3...31.32)}=\frac{1}{2^{32}.32}=\frac{1}{2^{37}}\)

Do đó \(4^x=\frac{1}{2^{37}}\Leftrightarrow 2^{2x}=\frac{1}{2^{37}}\Leftrightarrow 2^{2x+37}=1\)

\(\Leftrightarrow 2x+37=0\Leftrightarrow x=-\frac{37}{2}\)

Vậy \(x=\frac{-37}{2}\)

18 tháng 11 2017

Số 2 nó ở đâu chui ra v Violympic toán 7

2 tháng 8 2017

Giải:

a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)

\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)

\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)

\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)

\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)

\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)

\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)

\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)

\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)

\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)

\(\Leftrightarrow x=-\dfrac{79}{210}\)

Vậy \(x=-\dfrac{79}{210}\).

b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)

\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)

\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)

\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)

\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)

\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)

\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)

\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)

\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)

\(\Leftrightarrow3x=\dfrac{67}{75}\)

\(\Leftrightarrow x=\dfrac{67}{75}:3\)

\(\Leftrightarrow x=\dfrac{67}{225}\)

Vậy \(x=\dfrac{67}{225}\).

Chúc bạn học tốt!

2 tháng 8 2017

CÁC BẠN GIÚP MK NHA!!!

NGÀY MAI MK NỘP BÀI RỒI

AI TRẢ LỜI NHANH NHẤT

CHÍNH XÁC NHẤT VÀ RÕ RÀNG

THÌ MK TICK CHO NHA!!!

NHỚ TRẢ LỜI NHANH GIÙM MK NHAok

2 tháng 8 2017

Hoàng Ngọc Anh bài này nè bn giúp mk nha!!! ngày mai mk phải nộp bài rùi =.=

2 tháng 8 2017

a) \(\Rightarrow\dfrac{\dfrac{7}{2}x+\dfrac{59}{24}}{\dfrac{13}{30}}=\dfrac{137}{52}\)

\(\Rightarrow\left(\dfrac{7}{2}x+\dfrac{59}{24}\right).52=\dfrac{13}{30}.137\)

\(\Rightarrow182x+\dfrac{767}{6}=\dfrac{1781}{30}\)

\(\Rightarrow x=\dfrac{-79}{210}\)

b) Tương tự câu a)

6 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)

\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)

\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)

\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)

\(\Rightarrow x=-36\)

7 tháng 8 2020

mk cần cả giải thích

giúp mk vs!!!

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

20 tháng 10 2023

a: \(2\left|3-2x\right|+\dfrac{1}{2}=\dfrac{5}{2}\)

=>\(2\left|2x-3\right|=2\)

=>|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

b: \(x^2\left(2^x-6\right)-2x^3=0\)

=>\(x^2\left(2^x-6-2x\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2^x-6-2x=0\end{matrix}\right.\Leftrightarrow x=0\)