K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2023

                          Bài 1: 

   (1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000

Đặt A = 1 - 2 + 3  - 4 +...- 96 + 97 - 98 + 99 

Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (99 - 1): 1 +  = 99

                  Vì 99 : 2 = 49 dư 1

Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99

A = 1 - 2 + 3  - 4 + ... - 96 + 97 - 98 + 99

A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99

A =   - 1 + (-1) + (-1) +...+ (-1) + 99

A = -1.49 + 99

A = -49 + 99

A = 50 Thay A = 

Vậy 50.\(x\) = 2000

            \(x\) = 2000 : 50

             \(x\) = 40

       

 

 

           

 

      

5 tháng 12 2023

2, n và n + 1

Gọi ước chung lớn nhất của n và n + 1 là d

Ta có: n ⋮ d;  n + 1 ⋮ d 

⇒ n + 1  - n ⋮ d 

                1 ⋮ d

                d = 1

Vậy ƯCLN(n +1; n) = 1 Hay  n + 1; n là hai số nguyên tố cùng nhau (đpcm)

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

25 tháng 1 2015

1.a) goi d la uoc chung cua 2n+1 va 2n+3

Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d 

 Suy ra (2n+3)-(2n+1) chia het cho d 

             Suy ra 2 chia het cho d

             MA d la uoc cua mot so le  nen d=1

VAy 2n+1 va 2n+3 la so nguyen to cung nhau.

b) Goi d la uoc chung cua 2n+5 va 3n+7

Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d

Suy ra 3(2n+5)-2(3n+7) chia het cho d

Suy ra 6n+15-6n-14 chia het cho d

Suy ra 1 chia het cho d

Suy ra d=1

Vay 2n+5 va 3n+7 la so nguyen to cung nhau.

Cau 2)

Vi 2n+1 luon luon chia het cho 2n+1

Suy ra 2(2n+1) chia het cho 2n+1

Suy ra 4n+2 chia het cho 2n+1(1)

Gia su 4n+3 chia het cho 2n+1 (2)

Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1

suy ra 1 chia het cho 2n+1

suy ra 2n+1 =1

           2n=0

                n=0

Vay n=0 thi 4n+3 chia het cho 2n+1.

 

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)

6 tháng 10 2016

a)Gọi UCLN(2n+1;2n+2) là d

Ta có:

(2n+2)-(2n+1) chia hết d

=>1 chia hết d

=>d=1

Vậy 2n+1 và 2n+2 là các số nguyên tố cùng nhau

b)Gọi UCLN(n+1;3n+4) là d

Ta có:

3n+4-[3(n+1)] chia hết d

=>3n+4-(3n+3) chia hết d

=>1 chia hết d 

=>d=1

Vậy n+1 và 3n+4  là các số nguyên tố cùng nhau

c)Gọi UCLN(n+3;2n+5) là d 

Ta có:

2(n+3)-(2n+5) chia hết d

=>2n+6-(2n+5) chia hết d

=>1 chia hết d

=>d=1

Vậy n+3 và 2n+5 là các số nguyên tố cùng nhau

6 tháng 10 2016

chắc chắn đúng

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau