Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Theo bài ra ta có:
\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{xy}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{xy}{18}=\frac{x+y+x-y}{5+1}=\frac{2x}{6}=\frac{x}{3}\)
\(\Rightarrow\frac{xy}{18}=\frac{x}{3}\Leftrightarrow\frac{y}{6}=1\Leftrightarrow y=6\)
Với y=6 thì thay vào ta có:
\(\frac{x+6}{5}=\frac{x-6}{1}\Leftrightarrow x+6=5x-30\Leftrightarrow4x=36\Leftrightarrow x=9\)
Vậy \(y=6;x=9\)
Theo bài ra ta có:
y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8
\(\Rightarrow y=\frac{0,8}{x}\left(1\right)\)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5
\(\Rightarrow x=\frac{0,5}{z}\left(2\right)\)
Thay (2) vào (1) ta có: \(y=\frac{0,8}{\frac{0,5}{z}}=0,8\cdot\frac{z}{0,5}=1,6z\)
Vậy y tỉ lệ thuận với z và hệ số tỉ lệ là 1,6
bài 1
a Từ công thức y=k*x nên k=y/x
hệ số tỉ lệ của y đối với x là k=y/x=4/6
b y=k*x =4/6*x
c nếu x =10 thì y = 4/6*10=4.6
Bài 1:Giải:
Nếu \(n\) lẻ thì \(2n\equiv-1\) (\(mod\) \(3\))
Từ \(PT\Rightarrow z^2\equiv-1\) ( \(mod\) \(3\)) (loại)
Nếu \(n\) chẵn thì \(n=2m\left(m\in N\right)\)
\(PT\) trở thành:
\(z^2-2^{2m}=153\) Hay \(\left(z-2m\right)\left(z+2m\right)=153\)
\(\Rightarrow z+2m\) và \(z-2m\inƯ\left(153\right)\)
\(\Leftrightarrow\) Ta tìm được: \(\left\{{}\begin{matrix}m=2\\z=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=4\\z=13\end{matrix}\right.\)
Vậy \(\left(n;z\right)=\left(4;13\right)\)
Bài 2:
b) Theo đề bài ta có:
\(35\left(x+y\right)=210\left(x-y\right)=12x.y\)
Chia các tích trên cho \(BCNN\left(35;210;12\right)=420\) ta được:
\(\dfrac{35\left(x+y\right)}{420}=\dfrac{210\left(x-y\right)}{420}=\dfrac{12xy}{420}\)
Hay \(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{xy}{35}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{\left(x+y\right)+\left(x-y\right)}{12+2}=\dfrac{\left(x+y\right)-\left(x-y\right)}{12-2}\)
\(\Leftrightarrow\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{x}{7}=\dfrac{y}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Leftrightarrow\dfrac{xy}{35}=\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{xy}{7y}=\dfrac{xy}{5x}\)
Mà \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\5x=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy hai số nguyên dương \(x;y\) là \(7;5\)
bạn giải thích thêm cái đoaạn từ 1 và 2 suy ra đk k