\(20abc<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

7 tháng 12 2016

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10 
<=> 2/3 < 1/a + 1/b + 1/c < 7/10 
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có 
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau : 
a) A = 2 
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại) 
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41} 
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13 
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại) 
b) A = 3 
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7 
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại) 
c) A >= 5 
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại) 
Tóm lại có các TH sau 
 A = 2, B = 7, C = 19 
 A = 2, B = 7, C = 23 
 A = 2, B = 7, C = 29 
 A = 2, B = 7, C = 31 
 A = 2, B = 7, C = 37 
 A = 2, B = 7, C = 41 
 A = 2, B = 11, C = 13 

 A = 3, B = 5, C = 7 
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có 
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2) 
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài . 

6 tháng 12 2016

Ta có

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

\(\Leftrightarrow\frac{2}{3}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{7}{10}\)

Không mất tính tổng quát ta giả sử \(a< b< c\)

\(\Rightarrow\frac{2}{3}< \frac{3}{a}\Rightarrow a=\left(2,3\right)\)(vì a nguyên tố)

Thế lần lược các giá trị a vào rồi làm tương tự như bước trên sẽ tìm được b, c (nhớ loại giá trị không đúng nhé)

Vai trò a, b, c là như nhau nên các giá trị a, b, c có thể đổi vị trí cho nhau nên chú ý để không bỏ xót nghiệm nhé

29 tháng 7 2019

ai giúp mk với

Bài 1:a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)Tìm tất cả các giá trị của x để A < 1b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)Bài 2:Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)Bài 3: a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng...
Đọc tiếp

Bài 1:

a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

Tìm tất cả các giá trị của x để A < 1

b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:

  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)

Bài 2:

Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)

Bài 3: 

a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng minh:

\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

b) Tìm tất cả bộ ba số nguyên tố (a;b;c) đôi một khác nhau thỏa mãn:

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

Bài 4:  Cho tam giác ABC có trung tuyến AM. Vẽ đường thẳng d cắt các cạnh AB, AC, và AM theo thứ tự E, F, N.

a) Chứng minh \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)

b) Giả sử d // BC. Trên tia đối của tia FB lấy điểm K. Gọi P là giao điểm của KN và AB, Q là giao điểm của KM và AC. Chứng minh PQ // BC.

 

 

 

 

 

 

1
3 tháng 8 2020

huyen

21 tháng 3 2018

20abc < 30(ab + bc + ac) < 21abc <=> \(\dfrac{2}{3}\) < (ab + bc + ac) / abc < \(\dfrac{7}{10}\)
<=> \(\dfrac{2}{3}\) < \(\dfrac{1}{a}+\)\(\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{7}{10}\)
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
\(\dfrac{2}{3}+\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}< \dfrac{7}{10}\).Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
@ A = 2, B = 7, C = 19
@ A = 2, B = 7, C = 23
@ A = 2, B = 7, C = 29
@ A = 2, B = 7, C = 31
@ A = 2, B = 7, C = 37
@ A = 2, B = 7, C = 41
@ A = 2, B = 11, C = 13
@ A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn ĐK bài toán.

21 tháng 3 2018

Hơi dài nha

Bài 1: Lãi suất của tiền gửi tiết kiệm của một ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7%/ tháng chưa đầy một năm thì lãi suất tăng lên 1,15%/tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi them một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5,747,478, 359 đồng (Chưa làm tròn)....
Đọc tiếp

Bài 1: Lãi suất của tiền gửi tiết kiệm của một ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7%/ tháng chưa đầy một năm thì lãi suất tăng lên 1,15%/tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi them một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5,747,478, 359 đồng (Chưa làm tròn). Hỏi bạn Chau đã gửi tiền tiết kiệm trong bao nhiêu tháng?

Bài 2: Tìm các số  \(\overline{aabb}\) sao cho  \(\overline{aabb}=\overline{\left(a-1\right)\left(a-1\right)}.\overline{\left(b-1\right)\left(b-1\right)}\).

Bài 3: Tìm số nguyên dương nhỏ nhất có ba chữ số \(\overline{abc}\) sao cho  \(\overline{abc}=a^3+b^3+c^3\).Còn số nguyên dương nào thỏa mãn điều kiện trên nữa không?

Bài 4: Tính: \(S=\dfrac{1}{2.3}-\dfrac{2}{3.4}+...+\dfrac{99}{100.101}-\dfrac{100}{101.102}\)

Bài 5: Xác định các hệ số a, b, c của đa thức: \(P\left(x\right)=a.x^3+b.x^2+c.x-2007\) để sao cho P(x) chia cho x -16 có số dư là 29938 và chia cho \(x^2-10x+21\) có đa thức số dư là  \(\dfrac{10873}{16}x-3750.\)

GIÚP MK VỚI NHÉ MN!!!!

1
25 tháng 7 2017

2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học

4. Bấm tổng sigma Shift + log

x = 1

cái số ở trên là 100

trong ngoặc là  \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)

kết quả: 0.07461166509

20 tháng 8 2016

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10 
<=> 2/3 < 1/a + 1/b + 1/c < 7/10 
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có 
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau : 
a) A = 2 
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại) 
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41} 
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13 
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại) 
b) A = 3 
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7 
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại) 
c) A >= 5 
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại) 
Tóm lại có các TH sau 
@ A = 2, B = 7, C = 19 
@ A = 2, B = 7, C = 23 
@ A = 2, B = 7, C = 29 
@ A = 2, B = 7, C = 31 
@ A = 2, B = 7, C = 37 
@ A = 2, B = 7, C = 41 
@ A = 2, B = 11, C = 13 
@ A = 3, B = 5, C = 7 
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có 
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2) 
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn ĐK bài toán.

5 tháng 4 2017

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
@ A = 2, B = 7, C = 19
@ A = 2, B = 7, C = 23
@ A = 2, B = 7, C = 29
@ A = 2, B = 7, C = 31
@ A = 2, B = 7, C = 37
@ A = 2, B = 7, C = 41
@ A = 2, B = 11, C = 13
@ A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn ĐK bài toán.

8 tháng 3 2018

a, => p^2 = 5q^2 + 4

+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )

+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5

=> p^2 = 5q^2 + 4 chia hết cho 3

=> p chia hết cho 3 ( vì 3 là số nguyên tố )

=> p = 3 => q = 1 ( ko t/m )

Vậy p=7 và q=3

Tk mk nha