K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016
  • Chứng minh được: mọi số dạng 3k±2,5k±2 đều ko fai số chính phương
  • Nếu b chẵn thì abc chia hết 2

Nếu b lẻ thì b2=8k+1 (k thuộc Z)=>b2±4ac là SCP lẻ.đặt b2±4ac=8m+1 (m thuộc Z)

=>4ac chia hết 8 =>ac chia hết 2 =>abc chia hết 2 (1)

  • Nếu b chia hết 3 =>abc chia hết 3

Nếu b ko chia hết 3 thì b2 chia 3 dư 1.khi đó ac ko chia hết  3 thì b2±4ac có dạng 3p±2 ko là SCP =>ac chia hết 3 =>abc chia hết 3 (2)

  • Nếu b chia hết 5 thì abc chia hết 5

Nếu b ko chia hết 5 thì b2 chia 5 dư 1.khi đó ac ko chia hết 5 thì b2±4c có dạng 5q±2 ko là SCP =>ac chia hết 5 =>abc chia hết 5 (3)

Từ (1) (2) (3) và vì (2,3,5)=1 nên abc chia hết 30

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath