\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Đặt \(n^2-n+2=a^2\left(a\in N\right)\)

\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)

\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)

Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)

\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)

Vậy n=2 thì ...

20 tháng 1 2019

\(x^2-x+1=k^2\left(k\in Z\right)\)

\(\Leftrightarrow4x^2-4x+4=4k^2\)

\(\Leftrightarrow\left(2x-1\right)^2+3=\left(2k\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2k\right)^2=-3\)

\(\Leftrightarrow\left(2x-2k-1\right)\left(2x+2k-1\right)=-3\)

Ta có cảc trường hợp: 

TH1: \(\hept{\begin{cases}2x-2k-1=1\\2x+2k-1=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=1\\x+k=-1\end{cases}\Leftrightarrow}x=0\) (loại)

TH2: \(\hept{\begin{cases}2x-2k-1=-1\\2x+2k-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=0\\x+k=2\end{cases}}\Leftrightarrow x=1\) (thỏa mãn)

TH3: \(\hept{\begin{cases}2x-2k-1=3\\2x+2k-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=2\\x+k=0\end{cases}\Leftrightarrow}x=1\) (TM)

TH4: \(\hept{\begin{cases}2x-2k-1=-3\\2x+2k-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-k=-1\\x+k=1\end{cases}}\Leftrightarrow x=0\) (loại)

Vậy x = 1

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.