Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2515 = (52)15 = 530
810.330 = (23)10.330 = 230.330 = 630
Vì 530 < 630 (0<5<6)
=> 2515 < 810.330
\(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}\cdot3^{30}=\left(2^3\right)^{10}\cdot3^{30}=2^{30}\cdot3^{30}=\left(2\cdot3\right)^{30}=6^{30}\)
Vì \(5< 6\) nên \(5^{30}< 6^{30}\)
Vậy \(25^{15}< 8^{10}\cdot3^{30}\)
b) Ta có: \(\left|209-x\right|\ge0\forall x\)
\(\Leftrightarrow\left|209-x\right|+2078\ge2078\forall x\)
Dấu '=' xảy ra khi 209-x=0
hay x=209
Vậy: Giá trị nhỏ nhất của biểu thức A=|209-x|+2078 là 2078 khi x=209
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Hình như bài này có vấn đề á bạn
Ta có: 2004 chia hết cho 7a
=> 7a thuộc ước của 2004
Mà: ước của 2004 = {1;2;3;167;12;668;1002; 2004;6;334;501;4} (ko kể ước âm vì a thuộc n*)
Thử tất cả các ước trên => Ko tồn tại số a nào thỏa mãn cả
P/s tham khảo nha