Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)
Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)
Theo bài ra ta có:
a chia 3 dư 1=> a + 2 chia hết cho 3
a chia 4 dư 2=> a + 2 chia hết cho 4
a chia 5 dư 3=> a + 2 chia hết cho 5
a chia 6 dư 4=> a + 2 chia hết cho 6
a chia hết cho 11
=> a + 2 thuộc BC(3; 4; 5; 6)
a chia hết cho 11
BCNN(3; 4; 5; 6) = 60
=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }
=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }
Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418
Vậy số tự nhiên cần tìm là 418.
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)