Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a) :
x=-5/3
Câu b) :
GỢI Ý : 3n-5 phải chia hết cho n-4 để A là số nguyên ( đk : n khác 4)
\(a,\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+3x=-4\)
\(\left(\frac{1}{24}-\frac{1}{30}\right).120+3x=-4\)
\(\frac{1}{120}.120+3x=-4\)
\(1+3x=-4\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=-\frac{5}{3}\)
\(b,A=\frac{3n-5}{n-4}=\frac{3n-12+7}{n-4}=3+\frac{7}{n-4}\)
Để \(A\in Z\Rightarrow7⋮n-4\Leftrightarrow n-4\in\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(5;3;11;-3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng