K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thức

13 tháng 7 2017

Bạn học nâng cao nhiều vào nhé, trong sách cái này nhiều lắm :)

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

\((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)

\(\Rightarrow x=y=z=\sqrt[2017]{3}\)

\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)

16 tháng 11 2018

Em cảm ơn cô chúc cô ngày nhà giáo vui vẻ

12 tháng 10 2019

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

12 tháng 10 2019

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)

30 tháng 9 2017

Ta có: \(x+y+z=x^3+y^3+z^3=1\)

\(\Rightarrow\left(x+y+z\right)^3=x^3+y^3+z^3=1\)

\(\Rightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(x=-z\)

Với \(x=-y\); \(x+y+z=1\Rightarrow z=1\)

\(\Rightarrow B=1\)

Với các trường hợp còn lại B vẫn bằng 1

Đáp số: B = 1