\(A=x^2-x+1\)

2.Cho hình tam giác ABC,đường cao AD,BE,CF cắt nhau...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Bài Làm:

1, Ta có: \(A=x^2-x+1\)

\(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

= \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

\(\Rightarrow A\ge\dfrac{3}{4}\forall x\)

Dấu " = " xảy ra khi: \(x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Min \(A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\).

Chúc pạn hok tốt!!!

9 tháng 5 2018

2, P tự vẽ hình nha!!!

a, Xét \(\Delta ABD\)\(\Delta CBF\) có:

\(\widehat{B}\): chung

\(\widehat{ADB}=\widehat{CFB}=90^0\)

\(\Rightarrow\Delta ABD\sim\Delta CBF\)( g.g )

b) Xét \(\Delta AFH\)\(\Delta CDH\) có:

\(\widehat{AFH}=\widehat{CDH}=90^0\)

\(\widehat{AHF}=\widehat{DHC}\) ( Đối đỉnh )

\(\Rightarrow\Delta AFH\sim\Delta CDH\) ( g.g )

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{FH}{HD}\)

\(\Rightarrow AH.HD=CH.HE\)

a) Xét ΔABD và ΔCBF có

\(\widehat{BDA}=\widehat{CFB}\left(=90^0\right)\)

\(\widehat{FBC}\) chung

Do đó: ΔABD\(\sim\)ΔCBF(g-g)

b) Xét ΔAHF và ΔCHD có

\(\widehat{AFH}=\widehat{CDH}\left(=90^0\right)\)

\(\widehat{AHF}=\widehat{CHD}\)(hai góc đối đỉnh)

Do đó: ΔAHF\(\sim\)ΔCHD(g-g)

\(\frac{AH}{CH}=\frac{HF}{HD}=\frac{AF}{CD}=k\)(tỉ số đồng dạng)

hay \(AH\cdot HD=HF\cdot CH\)(đpcm)

27 tháng 5 2020

Cảm ơn!Làm đc câu c);d) ko bạn?

a: Xét ΔABD vuông tại D và ΔCBF vuông tại F có

góc ABD chung

Do đó: ΔABD đồng dạng vơi ΔCBF

b: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

Do đó: ΔHDC đồng dạng với ΔHFA

Suy ra: HD/HF=HC/HA

hay \(HD\cdot HA=HC\cdot HF\)

c: Xét ΔBDF và ΔBAC có

BD/BA=BF/BC

góc DBF chung

Do đó:ΔBDF đồng dạng với ΔBAC

1: Xét tứgiác BHCK có

BH//CK

BK//CH

Do đó:BHCK là hình bình hành

2: Xét ΔHEA vuông tai E và ΔHDB vuông tại D có

góc EHA=góc DHB

Do đo: ΔHEA đồng dạng với ΔHDB

Suy ra: HE/HD=HA/HB

hay HE/HA=HD/HB

Xét ΔhED và ΔHAB có

HE/HA=HD/HB

góc EHD=góc AHB

Do đo: ΔHED đồng dạng với ΔHAB

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

Do đo: ΔABD đồng dạng với ΔACB

b: Ta có: ΔABD đồng dạng với ΔACB

nên AD/AB=AB/AC
=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm

21 tháng 8 2019

giup mình với mai đi hc rồi

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

DO đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

Do đó: ΔAEF\(\sim\)ΔABC

22 tháng 2 2017

A ; Ta có : góc ADB=góc AEC=90 độ( đề cho) 

                góc BAC ( chung)

  vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)

B; Xét tam giác EHB và tam giác BCH có:

  góc CBH = góc BEH=90 độ

    Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)

        vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)

  dựa theo 2 tam giác đồng dạng ta có tỉ lệ:

           EH/HD=BH/HC ( Ta -lét)

          EH*HC=BH*HD( ĐPCM)

 C; Theo phần a ta có :

 tam giác ABD đồng dạng với tam giác ACE:

suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )

 góc A chung

 vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)

     

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH a) tính BC b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB c) chứng minh AB2=BH.BC. tính BH,HC d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB Bài 2: cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC b) chứng minh BC2=HC.DC c) chứng minh \(\Delta...
Đọc tiếp

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH

a) tính BC

b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB

c) chứng minh AB2=BH.BC. tính BH,HC

d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB

Bài 2:

cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK

a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC

b) chứng minh BC2=HC.DC

c) chứng minh \(\Delta AKD\sim\Delta BHC\)

d)cho BC=15cm, DC=25cm. Tính HC, HD

e)tính diện tích hình thang ABCD

Bài 3:

cho\(\Delta\)ABC các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. gội M là trung điểm của BC

a) chứng minh \(\Delta ADB\sim\Delta AEC\)

b)chứng minh HE.HC=HD.HB

c) chứng minh H,K,M thẳng hàng

d)\(\Delta ABC\) phải có điều kiện nào thì tứ giác BHCK là hình thoi? hình chữ nhật?

1

Bài 1:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC đồg dạg với ΔHBA

c: Xét ΔaBC vuông tại A có AHlà đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)
=>CH=6,4cm

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ só bằng nhau ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm