Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
\(A=x^3+y^3+z^3+kxyz\)
Thực hiện phép chia ta được
\(A=\left(x^3+y^3+z^3+kxyz\right)\div\left(x+y+z\right)\)
\(A=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-xz-yz-yz\left(k+2\right)\right]-yz\left(x+z\right)\left(k+3\right)\)
Để phép chia hết thì: \(yz\left(x+z\right)\left(k+3\right)=0\)
Suy ra: \(k+3=0\)
Suy ra: \(k=3\)
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
bài toán này bắt nguồn 1 phần từ bài: Cho x;y;z nguyên thỏa mãn \(x^3+y^3+z^3⋮3\). Chứng minh \(x+y+z⋮3\)
Quay về bài toán đầu: (cũng chứng minh luôn bài toán trên)
Ta có: (x + y + z)3 = x3 + y3 + z3 +3(x + y)(y + z)(z + x) (*)
Lại có: \(x^3+y^3+z^3⋮3;3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮3\) nên \(\left(x+y+z\right)^3⋮3\)\(\Rightarrow x+y+z⋮3\)
\(\Rightarrow\left(x+y+z\right)^3⋮27\)
Kết hợp với (*) và \(x^3+y^3+z^3⋮27\)\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮27\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮9\left(1\right)\)
+) Nếu cả 3 số x;y;z cùng chia hết cho 3 ta có đpcm
+) Nếu 3 số x;y;z không cùng chia hết cho 3
Thấy rẳng nếu x;y;z cùng dư 1 hoặc 2 thì mâu thuẫn với (1)
Do đó, để (1) đúng thì trong 3 số x;y;z chỉ có 2 số chia hết cho 3 hoặc có 1 số chia 3 dư 1; 1 số chia 3 dư 2
- Nếu trong 3 số x;y;z chỉ có 2 số chia hết cho 3; giả sử x;y chia hết cho 3
Khi đó; \(x+y⋮3;y+z⋮̸3;z+x⋮̸̸3\)
Để (1) đúng thì \(x+y⋮9\left(đpcm\right)\)
- Nếu trong 3 số x;y;z có 1 số chia 3 dư 1; 1 số chia 3 dư 2; giả sử 2 số đó là y;z
Khi đó, \(x+y⋮̸3;y+z⋮3;z+x⋮̸3\)
Để (1) đúng thì \(y+z⋮9\left(đpcm\right)\)
Vậy ta có đpcm
\(f\left(x,y,z\right)=x^3+y^3+z^3+kxyz\) sẽ chia hết cho \(x+y+z\) khi và chỉ khi \(f\left(-y-z,y,z\right)=0\).
Nghĩa là \(\left(-y-z\right)^3+y^3+z^3+k\left(-y-z\right)yz=0\)
Khai triển: \(-3yz\left(y+z\right)-k\left(y+z\right)yz=0\) hay \(k=3\).