Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi đề sai, hoặc các đáp án đều sai, ko có đường tròn nào đi qua O(0;0) hết
Lời giải:
Để 2 đths $y=ax+b$ tiếp xúc với cả 2 parabol đã cho thì 2 pt hoành độ giao điểm : \(\left\{\begin{matrix} ax+b=8-3x-2x^2\\ ax+b=2+9x-2x^2\end{matrix}\right.\) đều có nghiệm duy nhất
\(\Leftrightarrow \left\{\begin{matrix} 2x^2+x(a+3)+(b-8)=0(1)\\ 2x^2+x(a-9)+(b-2)=0(2)\end{matrix}\right.\) cả 2 đều có nghiệm duy nhất
Điều này xảy ra khi mà:
\(\Delta_1=(a+3)^2-8(b-8)=0\)
\(\Delta_2=(a-9)^2-8(b-2)=0\)
Trừ theo vế ta thu được \(24a-24=0\Rightarrow a=1\Rightarrow b=10\)
Vậy $(a,b)=(1,10)$
\(3x^2+5y^2-2x-2xy+1\)
\(=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+x^2+4y^2\)
\(=\left(x-1\right)^2+\left(x-y\right)^2+x^2+4y^2\ge0\forall x:y\)
Do dấu bằng không xảy ra \(\Rightarrow\left(x+1\right)^2+\left(x-y\right)^2+x^2+4y^2>0\forall x:y\)
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
\(x^2+y^2\le2x+4y\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2\le5\)
Trong hệ tọa độ \(Oxy\)vẽ đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=5\)(C) và đường thẳng \(2x+y-F=0\)(d)
\(F=2x+y\)đạt GTNN hay GTLN khi (d) là tiếp tuyến của (C).
\(I\left(1,2\right)\)là tâm của (C), \(R=\sqrt{5}\)là bán kính của (C).
\(d\left(I,d\right)=\frac{\left|2.1+2-F\right|}{\sqrt{2^2+1^2}}=\frac{\left|F-4\right|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow\orbr{\begin{cases}F=-1\\F=9\end{cases}}\).
Vậy \(minF=-1,maxF=9\).
8x2 hoặc bằng 0 hoặc có ước là 8 => Không có x nào thỏa mãn bài toán
Ta có: x^2 – 2x + 1 = 6y^2 -2x + 2
=> x^2 – 1 = 6y^2 => 6y^2 = (x-1).(x+1) chia hết cho 2 , do 6y^2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y^2 chia hết cho 8 => 3y^2 chia hết cho 4 => y^2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
bạn lấy x-1+x+1=2x chia hết cho 2 ở đâu vậy