\(\dfrac{3-4x}{2x^2+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

\(E=\dfrac{\left(x-2\right)^2-\left(x^2+1\right)}{2\left(x^2+1\right)}\)\(=\dfrac{\left(x-2\right)^2}{2\left(x^2+1\right)}-\dfrac{1}{2}\ge\dfrac{-1}{2}\)

Vậy Emin=\(\dfrac{-1}{2}\Leftrightarrow x=2\)

\(E=\dfrac{4x^2+4-4x-1-4x^2}{2\left(x^2+1\right)}\)\(=2-\dfrac{4x^2+4x+1}{2\left(x^2+1\right)}\)=\(2-\dfrac{\left(x+\dfrac{1}{2}\right)^2}{2\left(x^2+1\right)}\le2\)

Vậy Emax=2\(\Leftrightarrow x=\dfrac{-1}{2}\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

2 tháng 6 2017

d/tìm Min:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1

=>Min D=-1.Dấu = xảy ra khi x=-2

TÌM Max:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4

=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)

các câu kia tương tự nha bạn.chúc bạn học tốthihi

2 tháng 6 2017

Rảnh rỗi sinh nông nỗi , tui lm câu a nha!

a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)

= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)

\(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x

=> Dấu = xảy ra <=> x + 1 = 0 => x = -1

=> GTNN của A = -1 khi x = -1

8 tháng 2 2019

\(E=\frac{3-4x}{2x^2+2}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{2x^2+2}=2-\frac{\left(2x+1\right)^2}{2x^2+2}\le2\forall x\)

Dấu "=" xảy ra khi: \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

\(E=\frac{3-4x}{2x^2+2}=\frac{x^2-4x+4-\left(x^2+1\right)}{2x^2+2}=\frac{\left(x-2\right)^2}{2x^2+2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x-2=0\Leftrightarrow x=2\)

23 tháng 8 2018

bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5

23 tháng 8 2018

lộn câu a nhen

8 tháng 2 2019

\(E=\dfrac{\left(x-2\right)^2-\left(x^2+1\right)}{2\left(x^2+1\right)}\)\(=\dfrac{\left(x-2\right)^2}{2\left(x^2+1\right)}-\dfrac{1}{2}\ge\dfrac{-1}{2}\)

Vậy Emin=\(\dfrac{-1}{2}\Leftrightarrow x=2\)

\(E=\dfrac{4x^2+4-4x-1-4x^2}{2\left(x^2+1\right)}\)\(=2-\dfrac{4x^2+4x+1}{2\left(x^2+1\right)}\)=\(2-\dfrac{\left(x+\dfrac{1}{2}\right)^2}{2\left(x^2+1\right)}\le2\)

Vậy Emax=2\(\Leftrightarrow x=\dfrac{-1}{2}\)

14 tháng 10 2017

a,

\(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2\)

\(=>A=\dfrac{x^2+4x+6}{3}\ge\dfrac{2}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2/3 , dấu ''='' xảy ra khi và chỉ khi x = -2 .

b, \(Ta,c\text{ó}:\left|1-2x\right|\ge0\)

\(=>4+\left|1-2x\right|\ge4\)

\(=>\dfrac{4+\left|1+2x\right|}{5}\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của biểu thức là 4/5 , dấu bằng xảy ra khi và chỉ khi 1 - 2x = 0 => x = 1/2

c,

\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)

\(=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\ge\dfrac{5}{1}=5\)

Vậy giá trị nhỏ nhất của biểu thức là 5 , dấu '='' xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}2x+1=0\\y+1=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)

8 tháng 3 2018

a. \(A+1=\dfrac{27-12x+x^2+9}{x^2+9}\)

\(\Rightarrow A+1=\dfrac{x^2-12x+36}{x^2+9}\)

\(\Rightarrow A+1=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\)

Min A+1 = 0

=> Min A = -1

Dấu = xảy ra khi và chỉ khi x = 6

\(4-A=\dfrac{4x^2+36-27+12x}{x^2+9}\)

\(4-A=\dfrac{4x^2+12x+9}{x^2+9}\)

\(4-A=\dfrac{\left(2x+3\right)^2}{x^2+9}\)

\(A=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)

=> Max A= 4

Dấu = xảy ra khi và chỉ khi \(x=\dfrac{-3}{2}\)

8 tháng 3 2018

B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{4x^2+8x+4-4x^2-1}{4x^2+1}\)

=\(\dfrac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}=\dfrac{4\left(x^2+2x+1\right)}{4x^2+1}-1\)

=\(\dfrac{4\left(x+1\right)^2}{4x^2+1}-1\)

=> Min B=-1 dấu = xảy ra khi x=-1

B=\(\dfrac{8x+3}{4x^2+1}=\dfrac{16x^2+4-16x^2+8x-1}{4x^2+1}\)

=\(\dfrac{\left(16x^2+4\right)-\left(16x^2-8x+1\right)}{4x^2+1}=\dfrac{4\left(4x^2+1\right)-\left(4x-1\right)^2}{4x^2+1}\)

=\(\dfrac{4\left(4x^2+1\right)}{4x^2+1}-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)=\(4-\dfrac{\left(4x-1\right)^2}{4x^2+1}\)

=> Max B=4 dấu = xảy ra khi x=\(\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)

\(=(x-2)^2-3\geq 0-3=-3\)

Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$

Vậy GTNN của $A$ là $-3$ khi $x=2$

Câu b:

\(B=5-8x-x^2=21-(x^2+8x+16)\)

\(=21-(x+4)^2\leq 21-0=21\)

Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$

Vậy GTLN của $B$ là $21$ khi $x=-4$

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu c:

\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)

\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)

Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)

Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$

Câu d:

\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)

\(=(x^2+5x-6)(x^2+5x+6)\)

\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)

Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)

Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$