Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thành Phát
P = x² + xy + y² - 3x - 3y + 2010 ⇒ 4P = 4(x² + xy + y² - 3x - 3y + 2010)
= 4x² + 4xy + 4y² - 12x - 12y + 8040 = 4x² + 4xy + y² + 3y² - 12x - 6y - 6y + 3 + 9 + 8028
= (4x² + 4xy + y²) - (12x + 6y) + 9 + (3y² - 6y + 3) + 8028
= [ (2x + y)² - 6(2x + y) + 9 ] + 3(y² - 2y + 1) + 8028
= (2x + y - 3)² + 3(y - 1)² + 8028. Do (2x + y - 3)² ≥ 0 và 3(y - 1)² ≥ 0
⇒ (2x + y - 3)² + 3(y - 1)² + 8028 ≥ 8028 ⇒ 4P ≥ 8028 ⇒ P ≥ 2007.
Dấu '=' xảy ra ⇔ 3(y - 1)² = 0 và (2x + y - 3)² = 0
⇔ y - 1 = 0 và 2x + y - 3 = 0
⇔ y = 1 và x = (3 - y)/2 = (3 - 1)/2 = 1
Vậy với x = y = 1 thì GTNN của P là 2007.
a, A = (x-1)(x+5)(x-3)(x+7) =(x^2 + 4x -5) (x^2 + 4x - 21) = (x^2+4x-5)(x^2+4x-5-16)
Đặt x^2 +4x -5 = a =>A = a.(a-16) = a^2 - 16a = a^2 - 2.a.8 + 64 - 64 = (a-8)^2 - 64\(\ge-64\)
Vậy GTNN của A = -64 khi a-8 =0 hay x^2 +4 x -13 =0 giải ra x
a, A = x^6 - 2 x^3 +1 + x^2 - 2x + 1 + 13=(x^3 - 1)^2 + (x-1)^2 +13
Vậy Min A = 13 khi x=1
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
Áp dung BĐT Bunhiacopxki ta có:
\(13A=\left(2^2+3^2\right)\left(x^2+y^2\right)\ge\left(2.x+3.y\right)^2=13^2=169\)
\(\Rightarrow13A\ge169\Rightarrow A\ge13\)
Nên GTNN của A là 13 đạt được khi \(\frac{2}{x}=\frac{3}{y}=\frac{4}{2x}=\frac{9}{3y}=\frac{4+9}{2x+3y}=\frac{13}{13}=1\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Cảm ơn nha !