Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)
Vậy ...
Ta có :
\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)
\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy ...
Giá trị nhỏ nhất của B = 0
Giá trị lớn nhất của Q = -11
\(\left|x-1\right|+3x=1\left(1\right)\)
\(\left(+\right)x\ge-1\) ,khi đó (1) trở thành \(x-1+3x=1=>4x-1=1=>4x=2=>x=\frac{1}{2}\)
\(\left(+\right)x< 1\),khi đó (1) trở thành \(1-x+3x=1=>1+2x=1=>2x=0=>x=0\)
Vậy.............