K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

28 tháng 8 2016

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

7 tháng 2 2020

\(E=1,5-\left|2,7-x\right|\)

Ta thấy : \(\left|2,7-x\right|\ge0\)

\(\Leftrightarrow E=1,5-\left|2,7-x\right|\le1,5\)

Dấu " = " xảy ra 

\(\Leftrightarrow2,7-x=0\)

\(\Leftrightarrow x=2,7\)

Vậy \(Max_E=1,5\Leftrightarrow x=2,7\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0