\(\sqrt{3-2x}\)

2,giải phương trình :

a,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Bài 1:

ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

Bài 2:

a. ĐKXĐ: $x\geq \frac{1}{3}$

PT $\Leftrightarrow 3x-1=2^2=4$

$\Leftrightarrow x=\frac{5}{3}$ (tm)

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$

$\Leftrightarrow 3\sqrt{x-2}=6$

$\Leftrightarrow \sqrt{x-2}=2$

$\Leftrightarrow x-2=4$

$\Leftrightarrow x=6$ (tm)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

a)

ĐK: \(\forall x\in\mathbb{R}\)

Ta có: \(\sqrt{3x^2}-\sqrt{12}=0\)

\(\Rightarrow \sqrt{3x^2}=\sqrt{12}\)

\(\Rightarrow 3x^2=12\Rightarrow x^2=4\Rightarrow x=\pm 2\) (đều thỏa mãn)

b) ĐK: \(\forall x\in\mathbb{R}\)

\(\sqrt{(x-3)^2}=9\)

\(\Leftrightarrow |x-3|=9\Rightarrow \left[\begin{matrix} x-3=9\\ x-3=-9\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=12\\ x=-6\end{matrix}\right.\)

c) ĐK: $x\in\mathbb{R}$
\(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1}=6\)

\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)

\(\Leftrightarrow |2x+1|=6\)

\(\Rightarrow \left[\begin{matrix} 2x+1=6\\ 2x+1=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=-\frac{7}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

d) ĐK: \(x\geq 1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow \sqrt{16(x-1)}-\sqrt{9(x-1)}+\sqrt{4(x-1)}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}=8\Rightarrow \sqrt{x-1}=2\)

\(\Rightarrow x=2^2+1=5\) (thỏa mãn)

e)

ĐK: \(-4\leq x\leq \frac{1}{2}\)

\(\sqrt{1-x}+\sqrt{1-2x}=\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{1-x}-1+\sqrt{1-2x}-1=\sqrt{x+4}-2\)

\(\Leftrightarrow \frac{(1-x)-1}{\sqrt{1-x}+1}+\frac{(1-2x)-1}{\sqrt{1-2x}+1}=\frac{(x+4)-2^2}{\sqrt{x+4}+2}\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+\frac{-2x}{\sqrt{1-2x}+1}=\frac{x}{\sqrt{x+4}+2}\)

\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn lớn hơn $0$

Do đó: \(x=0\) là nghiệm duy nhất của pt.

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

25 tháng 8 2017

1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)

   \(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)

   \(2x^2-2x=0\)

    \(2x\left(x-1\right)=0\)

            \(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)

    \(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)

   \(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)

  \(2\sqrt{x-1}=6\)

   \(\sqrt{x-1}=3=\sqrt{9}\)

    \(\Rightarrow x=10\)

   

   

25 tháng 8 2017

4)\(1-3x+\sqrt{x^2-6x+9}=0\)

   \(1-3x+\sqrt{\left(x-3\right)^2}=0\)

    \(1-3x+x-3=0\)

    \(x=-1\)

5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)

    \(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)

    \(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)

      \(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)

     \(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)

     \(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)

6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)

    \(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)

2 tháng 1 2019

1/ \(x\ge\dfrac{1}{3}\)

2/ \(\forall x\in R\)

3/ \(x\le\dfrac{5}{2}\)

4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)

5/ \(x>2\)

6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)

7/ \(x\ge\dfrac{1}{2}\)

8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)

9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)

10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)

*Căn thức luôn không âm & mẫu chứa căn luôn dương

2 tháng 1 2019

1) Để biểu thức \(\sqrt{3x-1}\)​ có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)

2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa

3) Để biểu thức \(\sqrt{5-2x}\)​ có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)

4) Để biểu thức ​\(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)

5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\)​ có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)

6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)

Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa

7) Để biểu thức \(\sqrt{2x-1}\)​ có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)

8) Để biểu thức ​\(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\)​ có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)

10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\)​ có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)