Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x=y^4+y^3+y^2+y\) (1)
\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)
\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)
Ta có
\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\) (2)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)
\(\Leftrightarrow y\ne-1\)(do y là số nguyên)
lúc đó (1) xảy ra khi
\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\) (3)
tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)
\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)
\(\Leftrightarrow3y^2+4y=4y^2+2y\)
\(\Leftrightarrow y^2-2y=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)
Thay vào (3) tìm được y
Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)
Bài 2:
Với $x,y,z$ nguyên dương ta thấy:
\((x+y)^2+3x+y+1> (x+y)^2(1)\)
Và:
\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)
hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$
Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)
\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)
Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$
$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$
$\Leftrightarrow x=y$
Thay vào PT ban đầu:
\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)
Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.
Lời giải:
Xét
PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Ta thấy:
\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)
\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)
\(>(y-1)^3(2)\)
Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)
\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)
Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)
Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)
\(\Leftrightarrow y=0\)
\(\Rightarrow x^3=1\Rightarrow x=1\)
Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)
\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)
$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$
Vậy $(x,y)=(1,0); (-1,-1)$
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Do x0 là nghiệm của phương tình x2-m(m+4)x+m2+2m-1=0 nên tồn tại m để x02 -(m+4)x0+m2+2m-1=0
<=> m2+(2-x0)m+x02-4x0 -1=0 có nghiệm
<=> (2-x0)2 -4(x02-4x0-1) >=0
<=> -3x02+12x0+8 >=0
<=> \(\frac{6-2\sqrt{15}}{3}\le x_0\le\frac{6+2\sqrt{15}}{3}\)
Tự xử lý phần dấu "="
Ta có x2 - y2 = 6y + 44
<=> x2 - (y + 3)2 = 35
<=> (x - y - 3)(x + y + 3) = 5×7
<=> \(\hept{\begin{cases}x-y-3=7\\3+x+y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=5\\3+x+y=7\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=1\\3+x+y=15\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=15\\3+x+y=1\end{cases}}\)
Vậy (x; y) = (8; 4)