\(y=\frac{n-2}{3n+7}\) là phân số tối...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Bài 1:

Ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)

=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)

=> ab = 92

Bài 2:

Hữu hạn: -7/16; 2/125; -9/8

Vô hạn tuần hoàn: -5/3; 5/6; -3/11

Chúc bạn học tốt !!!

28 tháng 5 2019

Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)

\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)

Vậy \(\overline{ab}=92\)

Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên  phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)

          Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)

25 tháng 10 2018

\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)

\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)

\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)

\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)

\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)

\(=3,75.\left(7,2+2,8\right)\)

\(=3,75.10=37,5\)

\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)

\(=\frac{-3}{7}+-\frac{4}{7}=-1\)

\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)

\(=9-\frac{1}{8}.8+0,2\)

\(=9-1+0,2=8+0,2=8,2\)

25 tháng 10 2018

\(a-c\left(tựlm\right)\)

\(b.\left(x-1\right)^5=-32\)

\(\Rightarrow\left(x-1\right)^5=\left(-2\right)^5\)

\(\Rightarrow x-1=-2\)

\(x=-2+1=-1\)

\(d.\left(2^3:4\right).2^{x+1}=64\)

\(2.2^{x+1}=64\)

\(\Rightarrow2^{1+x+1}=64=2^6\)

\(\Rightarrow2+x=6\Rightarrow x=6-2=4\)

20 tháng 12 2018

\(=\frac{m^3+3m^3+2m+5}{m^3+3m^3+2m+6}\)

gọi d là UCLN của (m3+3m3+2m+5;m3+3m3+2m+6)

\(\hept{\begin{cases}m^3+3m^3+2m+6⋮d\\m^3+3m^3+2m+5⋮d\end{cases}\Rightarrow d=1}\)

=> p/s trên là p./s tối giản

p/s: tớ làm tắt, bn tự làm thêm vào nhé =))

22 tháng 12 2018

ukm cảm ơn

7 tháng 8 2015

bài 1

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)

bài 2

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)

7 tháng 8 2015

bài 1:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\frac{a}{b}=1\)  

  \(\frac{b}{c}=1\)  

  \(\frac{c}{a}=1\)

=> a=b   (1)

b=c    (2)

c=a     (3)

=> a=b=c

2 tháng 7 2019

Mình nghĩ như thế này thôi nhé   

x+2/x-6 = x-6+8/x-6 = 1  +   8/x-6 

để x+2/x-6 là số hữu tỉ dương => x-6  thuộc Ư(8)={ -1 ; 1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 } 

nếu x -6 = 1 => x = 7 ( TM ) 

Nếu x - 6 = -1 => x= 8 ( tm ) 

Nếu x - 6 = 2 => x = 8 ( tm ) 

Nếu x -6 = -2 =>  x = 4 ( tm ) 

Nếu x - 6 = 4 => x = 10 ( tm )

Nếu x -6 = -4 => x = 2 ( tm) 

Nếu x -6 = 8 => x = 14 ( tm )

Nếu x -6=-8 => x = -2 ( ktm )

Vậy x € { 7 ; 5 ; £ ; 4 ; 2 ; 10 ; 14   } thì x+2 / x-6  là số hữu tỉ dương 

b/ câu này bạn cũng làm tương tự như vậy nhưng x phải là số âm thì mới thỏa mãn . 

2 tháng 7 2019

a)\(\frac{x+2}{x-6}\)là số hữu tỉ dương\(\Leftrightarrow x+2\)và \(x-6\)cùng dấu.

Mà x + 2 > x - 6 nên \(\hept{\begin{cases}x+2< 0\\x-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>6\end{cases}}\)

Vậy x < - 2 và x > 6 thì \(\frac{x+2}{x-6}\)là số hữu tỉ dương

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

15 tháng 11 2018

Từ\(x\cdot y=\frac{x}{y}\)\(\Rightarrow y^2=\frac{x}{x}=1\)\(\Rightarrow y=1,y=-1\)

Mặt khác:Từ\(x-y=x\cdot y\Rightarrow\frac{x-y}{xy}=1\Rightarrow\frac{1}{y}-\frac{1}{x}=1\)

+)  y=1=>\(1-\frac{1}{x}=1\Rightarrow0=\frac{1}{x}\)(VL)

+)  y=-1=>\(-1-\frac{1}{x}=1\Rightarrow-2=\frac{1}{x}\Rightarrow x=-\frac{1}{2}\)

Vậy.........................

14 tháng 4 2019

ngày mai ko nghỉ hả

14 tháng 4 2019

thues hai tớ đi học thêm