K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

n + 5 chia hết cho 2n - 1

=> 2 ( n + 5 ) chia hết cho 2n - 1 

=> 2n + 10 chia hết cho 2n - 1

2n - 1 + 11 chia hết cho 2n - 1

Mà 2n - 1 chia hết cho 2n - 1

=> 11 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư( 11 )

=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }

=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }

=> n thuộc { 0 ; 1 ; 6 ; - 5 }

\(\left(x-2\right)\left(y-1\right)=5\)

\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét các trường hợp : 

  • \(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)
11 tháng 7 2018

1.n—3 chia hết cho n—1

==> n—1–2 chia hết chi n—1

Vì n—1 chia hết cho n—1

Nên 2 chia hết cho n—1

==> n—1 € Ư(2)

       n—1 € {1;—1;2;—2}

Ta có:

TH1: n—1=1

n=1+1

n=2

TH2: n—1=—1

n=—1+1

n=0

TH3: n—1=2

n=2+1

n=3

TH 4: n—1=—2

n=—2+1

n=—1

Vậy n€{2;0;3;—1}

Nếu bạn chưa học số âm thì không cần viết đâu

12 tháng 7 2018

bài 1:x.y=-15 => x=3;y=-5

                    x=-3;y=5

                   x=5;y=-3

                    x=-5;y=3

                    x=-1;y=15

                    x=1;y=-15

12 tháng 7 2018

Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong

BÀi 2: 

ta có:

\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)

Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)

\(\Rightarrow n-1\inƯ\left(2\right)\)

\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)

ta có bảng sau:

n-1-2-112
n-1023

\(n\in\left\{-1;0;2;3\right\}\)

12 tháng 2 2016

suy ra : n.[n+1]-[n+1]-4 chia hết n+1

suy ra -4 chia hết n+1

suy ra n+1 thuộc ước của -4

tự giải tiếp 

nha

13 tháng 2 2018

6n-5 chia hết cho 2n+3

=> 6n+9-14 chia hết cho 2n+3

=> 3(2n+3)-14 chia hết cho 2n+3

=> 14 chia hết cho 2n+3

=> 2n+3 là ước của 14

Mà 2n+3 là số nguyên lẻ

=> 2n+3 thuộc {-1;1}

=> n thuộc {-2;-1}

13 tháng 2 2018

Cam on nha

18 tháng 3 2020

a)

Ta có:

(n-1)∈Ư(15)={±1;±3;±5;±15}

=>n∈{2;0;4;-2;6;-4;16;-14}

Vậy: n∈{2;0;4;-2;6;-4;16;-14}

b)

Ta có:

2n-1 chia hết cho n-3

=>2(n-3)+5 chia hết cho n-3

=> 5 chia hết cho n-3

=> (n-3)∈Ư(5)={±1;±5}

=>n∈{4;2;8;-2}

Vậy: n∈{4;2;8;-2}

18 tháng 3 2020

a, n-1 \(\in\)Ư(15)

\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}

\(\Rightarrow\)\(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }

Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }

b, 2n-1 \(⋮\)n - 3

( n -3 ) + ( n -3 ) + 5  \(⋮\)n - 3

Vì n - 3  \(⋮\)n - 3 

nên 5  \(⋮\)n - 3

\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }

\(\Rightarrow\)\(\in\){ 4 ; 2 ; 8 ; -2 }

Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }

~ HOK TỐT ~

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2