Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+a_3+...+a_8+a_9}{a_1+a_2+a_3+...+a_9}=1\)
+) \(\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)
+) \(\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\)
...
+) \(\dfrac{a_9}{a_1}=1\Rightarrow a_1=a_9\)
\(\Rightarrow a_1=a_2=a_3=...=a_9\left(đpcm\right)\)
Vậy...
\(\dfrac{A1-1}{9}=\dfrac{A2-A}{8}=\dfrac{A3-3}{7}=....=\dfrac{A8-8}{2}=\dfrac{A9-9}{1}\)(1)
Từ (1) => \(\dfrac{A1-1}{9}=\dfrac{A2-A}{8}=\dfrac{A3-3}{7}=....=\dfrac{A8-8}{2}=\dfrac{A9-9}{1}\)
=\(\dfrac{A1-1+A2-2+A3-3+...+A9-9}{9+8+7+.......+1}\)
=\(\dfrac{\left(A1+A2+A3+...+A9\right)-\left(1+2+3+....+9\right)}{9+8+7+..+1}\)
=\(\dfrac{90-45}{45}=\dfrac{45}{45}=1\)
=>\(\dfrac{A1-1}{9}=1\Rightarrow A1=10\)
TƯƠNG TỰ TÍNH : A2=A3=......=A9=10
vẬY A1=A2=A3=.....=A9=10
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+...+a_8+a_9}{a_2+a_3+...+a_9+a_1}=1\)
\(\Rightarrow\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)
...
\(\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\)
\(\Rightarrow a_1=a_2=...=a_9\left(đpcm\right)\)
Vậy...
Bài này giống bài bình thường khác mỗi nhiều số
a) \(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=....=\dfrac{a_9-9}{1}\)
\(=\dfrac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)
\(=\dfrac{\left(a_1+a_2+a_3+...+a_9\right)-9-8-7-...-1}{45}\)
\(=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)
Từ đó => a1 = a2 = a3 = .... = a9 = 10
b) Áp dụng tính chất của dã tỉ số bằng nhau, ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2+8y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
\(\Rightarrow\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{24}\Rightarrow9+3x=24\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy...
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{a_1-1+a_2-2+a_3-3+....+a_9-9}{9+8+7+.....+1}\)
\(=\dfrac{\left(a_1+a_2+a_3+.....+a_9\right)-\left(1+2+3++.....+9\right)}{9+8+7+.....+1}\)
\(=\dfrac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9\Rightarrow a_1=10\)
\(\Rightarrow a_2-2=8\Rightarrow a_2=10\)
\(\Rightarrow a_3-3=7\Rightarrow a_3=10\)
\(.............................................\)
\(\Rightarrow a_9-9=1\Rightarrow a_9=10\)
\(\Rightarrow a_1=a_2=a_3=.....=a_{10}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+a_3+...+a_9-9}{9+8+7+...+1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1=1+9=10\)
\(\Rightarrow a_2=8+2=10\)
\(\Rightarrow a_3=7+3=10\)
...
\(\Rightarrow a_9=1+9=10\)
Vậy \(a_1=a_2=a_3=...=a_9=10\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
Áp dụng dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-1}{1}=\frac{a_1+a_2+...+a_9-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9\)
\(a_2-2=8\)
\(a_3-3=7\)
...................
\(a_9-9=1\)
Vậy \(a_1=a_2=a_3=a_4=a_5=a_{ }_6=a_7=a_8=a_9=10\)
Áp dụng dãy tỉ số bàng nhau ta có :
\(\frac{a1+1}{9}=\frac{a2+8}{8}=...=\frac{a9+9}{1}=\frac{a1+1+a2+2+..a9+9}{1+2+3+..+9}=\frac{\left(a1+a2+..+a9\right)+1+2+..+9}{1+2+3+..+9}\)
\(=\frac{90+45}{45}=\frac{135}{45}=3\)
=> a1+1 = 27 => a 1 = 26
=>a2+ 2 = 24 => a2 = 22
...............................
tương tự tìm tiếp
Câu hỏi của Như Tố - Toán lớp 7 | Học trực tuyến
Bài 1 là câu a