Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
2/
a/ ĐKXĐ:...
\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2x.\frac{x}{x+1}+\frac{2x^2}{x+1}=1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)
Đặt \(\frac{x^2}{x+1}=a\Rightarrow a^2+2a-1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{2}\\a=-1-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+1}=-1-\sqrt{2}\\\frac{x^2}{x+1}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\left(1+\sqrt{2}\right)x+1+\sqrt{2}=0\\x^2-\left(\sqrt{2}-1\right)x+1-\sqrt{2}=0\end{matrix}\right.\)
Xấu quá, bạn tự giải tay pt bậc 2 này đi
b/ ĐKXĐ: \(-2\le x\le6\)
\(VT=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1+1\right)\left(6-x+x+2\right)}=4\)
\(VP=\left(x-3\right)^2+4\ge4\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}6-x=x+2\\x-3=0\end{matrix}\right.\)
Phương trình vô nghiệm
1/
\(\Leftrightarrow5x^2+2\left(3y+1\right)x+2y^2+2y-40=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-40\right)\)
\(=-y^2-4y+201=205-\left(y+2\right)^2\)
Để phương trình có nghiệm nguyên \(\Leftrightarrow\Delta'\) là số chính phương
\(\Rightarrow205-\left(y+2\right)^2=k^2\)
\(\Rightarrow k^2+\left(y+2\right)^2=205=3^2+14^2=6^2+13^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=\pm3\\y+2=\pm14\\y+2=\pm6\\y+2=\pm13\end{matrix}\right.\)
Thay ngược lại (1) tìm x