Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(a,b,c\in N^{\text{*}};1\le a\le9;0\le b,c\le9;1\le a+b+c\le27\)
Vì \(\overline{abc}⋮18\Rightarrow\overline{abc}\in B\left(18\right)\Rightarrow a+b+c\in\left\{9;18;27\right\}\)
Ta có: \(\frac{a}{3}=\frac{b}{1}=\frac{c}{2}=\frac{a+b+c}{3+1+2}=\frac{a+b+c}{6}\)
\(\Rightarrow a+b+c⋮6\)
\(\Rightarrow a+b+c=18\)
\(\Rightarrow\frac{a}{3}=\frac{b}{1}=\frac{c}{2}=\frac{18}{6}=3\)
=>a = 9, b = 3, c = 6
Mà \(\overline{abc}⋮18\) => abc = 396;936
vậy...
Gọi 3 chữ số của số đó là a; b; c (a; b; c \(\in\)N*)
Có 3 chữ số của số đó tỉ lệ vớ 1; 2; 3
=> a : b : c = 1 : 2 : 3
=> \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Mà tổng 3 chữ số của số đó là 18
=> a + b + c = 18
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
=> a = 3
b = 6
c = 9
Mà số đó lớn hơn 500 và chia hết cho 2
=> Số phải tìm là 936
Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)
\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)
\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Nhân vế theo vế của 3 đẳng thức trên ta có:
\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)
Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ
a: Gọi số cần tìm có dạng là \(\overline{abc}\)
Vì \(\overline{abc}⋮18\) nên a+b+c=18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{18}{6}=3\)
Do đó: a=3; b=6; c=9
Vậy: Số cần tìm là 936; 396
b: \(\Leftrightarrow\left(a^2-2\right)\left(a^2-5\right)< 0\)
\(\Rightarrow2< a^2< 5\)
\(\Leftrightarrow a^2=4\)
hay \(a\in\left\{2;-2\right\}\)