K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Bấm máy tính là ra thui mà bn

a/ \(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=0\)

b/ \(=\left(2\sqrt{3}-10\sqrt{3}\right)\sqrt{3}=-24\)

c/ \(=15-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=15-6\sqrt{7}\)

d/ \(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=12\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

a)

\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)

\(=\sqrt{3}(2-3+1)=0\)

b)

\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)

\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)

\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)

\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)

------------------

\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)

\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

c)

\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)

\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)

\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)

d)

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

ok chứ Long Lê

c.√252−√700+√1008−√448

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)

=(6-10+12-8)\(\sqrt{7}\)

=0

8 tháng 2 2021

a, \(A=2\sqrt{3}-\sqrt{12}-\sqrt{9}\)

\(=2\sqrt{3}-2\sqrt{3}-3=-3\)

b, \(B=\sqrt{3}\left(\sqrt{12}+\sqrt{27}\right)\)

\(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}\right)\)

\(=\sqrt{3}.5\sqrt{3}=5.3=15\)

3 tháng 8 2016

a) \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=\left(2+6+15-36\right)\sqrt{3}=-13\sqrt{3}\)

b) \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=6\left(3+8-5\right)=36\)

 

3 tháng 8 2016

a)\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=\sqrt{4\cdot3}+2\sqrt{9\cdot3}+3\sqrt{25\cdot3}-9\sqrt{16\cdot3}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

b)\(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)

\(=2\sqrt{3}\left(\sqrt{9\cdot3}+2\sqrt{16\cdot3}-\sqrt{25\cdot3}\right)\)

\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(2\sqrt{3}\cdot6\sqrt{3}=12\cdot3=36\)

 

21 tháng 7 2019

a/\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)

b/ \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)

\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(=2\sqrt{3}\cdot6\sqrt{3}=2\cdot6\cdot3=36\)

c/ \(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)

\(=\left(1+\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)

\(=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

d/ \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{8-4\sqrt{10}+5}-\sqrt{45+12\sqrt{10}+8}\)

\(=\sqrt{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2\cdot5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\cdot2\sqrt{5\cdot2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)

\(=-4\sqrt{5}\)

21 tháng 7 2019

#)Giải :

 \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)

a: Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)

\(=0\)

b: Ta có: \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)

\(=5+7-1\)

=11

24 tháng 11 2021

\(a,=6\sqrt{2}-3-6\sqrt{2}=-3\\ b,=12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}=6\sqrt{3}+3\sqrt{5}\\ c,=\sqrt{3}-1-\sqrt{3}=-1\\ d,=\sqrt{6}-\dfrac{5\left(\sqrt{6}+1\right)}{5}=\sqrt{6}-\sqrt{6}-1=-1\)