Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
2:
a: =>-2x=10
=>x=-5
b: =>(x-3)(2x+5)=0
=>x=3 hoặc x=-5/2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
a) (x + 2) . (x + 3) - (x - 2) . (x + 5) = 6
=> (x . x + 3x + 2x + 2 . 3) - (x . x + 5x - 2x - 2 . 5) = 6
=> (x2 + 5x + 6) - (x2 + 3x - 10) = 6
=> x2 + 5x + 6 - x2 - 3x + 10 = 6
=> 2x +16 = 6 => 2x = -10 => x = -5
b) (3x + 2) . (2x + 9) - (x + 2) . (6x + 1) = (x + 1) - (x - 6)
=> (3x . 2x + 3x . 9 + 2 . 2x + 2 . 9) - (x . 6x + 1x + 2 . 6x + 2 .1) = x + 1 - x + 6
=> (6x2 + 31x + 18) - (6x2 + 13x + 2) = 7
=> 6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
=> 18x + 16 = 7 => 18x = 9 => x = 0,5
c) 3 . (2x - 1) . (3x - 1) - (2x - 3) . (9x - 1) = 0
=> 3(2x . 3x - 2x -3x + 1) - (2x . 9x - 2x -3 . 9x + 3) = 0
=> 3(6x2 - 5x +1) - (18x2 - 29x + 3) = 0
=> (18x2 -15x + 1) -(18x2 - 29x +3) = 0
=> 18x2 - 15x +1 -18x2 + 29x - 3 = 0
=> 14x = 0 => x = 0
a)(x+2)(x+3)-(x-2)(x+5)=6
x(x+3)+2(x+3)-x(x+5)+2(x+5)=6
x2+3x+2x+6-x2-5x+2x+10=6
(x2-x2)+(3x+2x-5x+2x)+(10+6)=6
2x+16=6
2x=6-16
2x=-10
x=-10/2
x=-5. Vậy x=-5
b)3x(2x+9)+2(2x+9)-x(6x+1)-2(6x+1)=x+1-x+6
6x2+27x+4x+18-6x2-x-12x-2=7
(6x2-6x2)+(27x+4x-x-12x)+(18-2)=7
18x+16=7
18x=7-16
x=-9/18=-1/2. Vậy x=-1/2
c)[3(3x-1)](2x-1)-(2x-3)(9x-1)=0
(9x-3)(2x-1)-(2x-3)(9x-1)=0
9x(2x-1)-3(2x-1)-2x(9x-1)+3(9x-1)=0
18x2-9x-6x+3-18x2+2x+27x-3=0
(18x2-18x2)+(27x+2x-6x-9x)+(3-3)=0
14x=0
x=0/14
x=0. Vậy x=0
a) (x + 2) . (x + 3) - (x - 2) . (x + 5) = 6 => (x . x + 3x + 2x + 2 . 3) - (x . x + 5x - 2x - 2 . 5) = 6
=> (x2 + 5x + 6) - (x2 + 3x - 10) = 6
=> x2 + 5x + 6 - x2 - 3x + 10 = 6
=> 2x +16 = 6 => 2x = -10 => x = -5
b) (3x + 2) . (2x + 9) - (x + 2) . (6x + 1) = (x + 1) - (x - 6)
=> (3x . 2x + 3x . 9 + 2 . 2x + 2 . 9) - (x . 6x + 1x + 2 . 6x + 2 .1) = x + 1 - x + 6
=> (6x2 + 31x + 18) - (6x2 + 13x + 2) = 7
=> 6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
=> 18x + 16 = 7 => 18x = -9 => x = -0,5
c) 3 . (2x - 1) . (3x - 1) - (2x - 3) . (9x - 1) = 0
=> 3(2x . 3x - 2x - 3x + 1) - (2x . 9x - 2x - 3. 9x + 3) = 0
=> 3(6x2 - 5x + 1) - (18x2 - 29x + 3) = 0
=> 18x2 - 15x + 3 - 18x2 + 29x -3 = 0
=> 14x = 0 => x = 0.
\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=4x\left(x^2-9\right)-x^3+27\)
\(=4x^3-36x-x^3+27\)
\(=3x^3-36x+27\)
\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)
\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)
\(=\left(x+6\right).0\)
\(=0\)