Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(1+\frac{sin^2a}{cos^2a}\right)cos^2a-\left(1+\frac{cos^2a}{sin^2a}\right)sin^2a.\)
\(=\frac{cos^2a+sin^2a}{cos^2a}.cos^2a-\frac{sin^2a+cos^2a}{sin^2a}.sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
\(\left(1+\frac{\sin^2}{\cos^2}\right)cos^2-\left(1+\frac{cos^2}{sin^2}\right)sin^2.\)
=> \(\frac{cos^2+sin^2}{cos^2}\left(cos^2\right)-\frac{sin^2+cos^2}{sin^2}\left(sin^2\right)\)
=> 1-1 =0
\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\)
\(=1+1\)
\(=2\)
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)
\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)
\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)
\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)
\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)
B
Bạn dùng theo công thức này
\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)
Dùng pt bậc 2
\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\)
Nghiệm x1 ; x2
\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\)
\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\)
\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\)
\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\)
\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=\sqrt{2}-\sqrt{2}=0\)
C.
\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\)
\(=1+1=2\)
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)