Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMN và ΔAMP có
MA chung
\(\widehat{NMA}=\widehat{PMA}\)(MA là tia phân giác của \(\widehat{NMP}\))
MN=MP(ΔMNP cân tại M)
Do đó: ΔAMN=ΔAMP(C-g-c)
a) Tam giác ABC vuông tại B
b) Tam giác DEF vuông tại F
c) Tam giác MNP không vuông
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
Bài 1:
a) Ta có: MN2+MP2=152+202=625
NP2=252=625
=> MN2+MP2=NP2
=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)
=> đpcm
b) Ta có I là trung điểm MP
=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)
Xét \(\Delta MNI\)vuông tại M có:
MN2+MI2=NI2 ( theo định lý Py-ta-go)
= 152+102=325
=> NI= \(\sqrt{325}\approx18\left(cm\right)\)
Bài 2:
Xét \(\Delta ABD\)vuông tại D có:
\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)
\(\Rightarrow AD^2+15^2=17^2\)
\(\Rightarrow AD^2=17^2-15^2=64=8^2\)
\(\Rightarrow AD=8\left(cm\right)\)
Lại có: AC=AD+DC
=> 17=8+DC
=> DC=9 cm
Xét \(\Delta BDC\)vuông tại D có:
\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)
\(\Rightarrow BC^2=15^2+9^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)
Vậy BC\(\approx\)17 cm
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP
Ta có:
AC2 = 52 = 25
AB2 + BC2 = 32 + 42 = 9 + 16 = 25
=> Tam giác ABC là tam giác vuông và vuông tại B ( định lý py-ta-go đảo )
MN2 = 252 = 625
NP2 + MP2 = 72 + 242 = 49 + 576 = 625
=> Tam giác MNP là tam giác vuông và vuông tại P ( định lý py-ta-go đảo )
Ta có:
\(FG=\sqrt{5}^2=5\)
EF2 + GE2 = 12 + 22 = 1 + 4 = 5
=> Tam giác EFG là tam giác vuông và vuông tại E ( định lý py-ta-go đảo )
Chỗ \(FG=\left(\sqrt{5}\right)^2=5\)mới đúng, sửa lại hộ mình nhé!