Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)
\(\Rightarrow A\left(-5;-3\right)\)
Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:
\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)
Gọi M là trung điểm BC thì tọa độ M thỏa mãn:
\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)
M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)
2.
Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)
M thuộc trung tuyến kẻ từ A nên:
\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)
\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)
Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Phương trình đường thẳng d qua C và vuông góc BN có dạng:
\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)
Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)
Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB
\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt
Phương trình AB:
\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)
A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)
2) Đặt \(\left\{{}\begin{matrix}x^2+ax+c=0\left(1\right)\\x^2+bx+d=0\left(2\right)\end{matrix}\right.\)
Xét \(\Delta_1\) của pt (1) = a2 - 4c
Xét \(\Delta_2\) của pt (2) = b2 -4d
Xét tổng 2 \(\Delta\) = a2 + b2 - 4c -4d
= (a - b)2 + 2ab - 4(c + d)
Có ab \(\ge2\left(c+d\right)\)
=> 2ab \(\ge\) 4(c + d)
=> 2ab - 4(c + d) \(\ge0\)
Có (a - b)2 \(\ge0\)
=> \(\Delta_1\) + \(\Delta_2\) \(\ge0\)
=> 1 trong 2 \(\Delta\ge0\)
=> 1 trong 2 pt có n0