Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
Ta có:
\(\sqrt{1+\sqrt{2\sqrt{3}}}\)và \(2\)
\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2\) và \(4\)
Do đó ta có:\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2=1+\sqrt{2\sqrt{3}}=1+\sqrt{\sqrt{12}}\)
\(4=1+3=1+\sqrt{9}=1+\sqrt{\sqrt{81}}\)
Vì \(\sqrt{\sqrt{12}}< \sqrt{\sqrt{81}}\)
\(\Rightarrow\sqrt{1+\sqrt{2\sqrt{3}}}< 2\)
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B