\(\frac{5^{12}-1}{5^{13}+1}\) và n=\(\frac{5^{11}-1}{5^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Ta có: \(5^{12}< 5^{13}\)

\(\Rightarrow5^{12}-1< 5^{13}+1\)

\(\Rightarrow m=\frac{5^{12}-1}{5^{13}+1}< 1\)

\(\Rightarrow m>\frac{5^{12}-1-4}{5^{13}+1+4}\)

\(\Rightarrow m>\frac{5^{12}-5}{5^{13}+5}\)

\(\Rightarrow m>\frac{5\left(5^{11}-1\right)}{5\left(5^{12}+1\right)}\)

\(\Rightarrow m>\frac{5^{11}-1}{5^{12}+1}\)

\(\Rightarrow m>n\)

10 tháng 4 2016

đặt A=\(\frac{5^{12}+1}{5^{13}+1}\);B=\(\frac{5^{11}+1}{5^{12}+1}\);C= \(\frac{5^{11}-1}{5^{12}-1}\)

ta có:nhân A,B,C với 5 ta đc:\(5A=\frac{5\left(5^{12}+1\right)}{5^{13}+1}=\frac{5^{13}+5}{5^{13}+1}=\frac{5^{13}+1+4}{5^{13}+1}=\frac{5^{13}+1}{5^{13}+1}+\frac{4}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

\(5B=\frac{5\left(5^{11}+1\right)}{5^{12}+1}=\frac{5^{12}+5}{5^{12}+1}=\frac{5^{12}+1+4}{5^{12}+1}=\frac{5^{12}+1}{5^{12}+1}+\frac{4}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

\(5C=\frac{5\left(5^{11}-1\right)}{5^{12}-1}=\frac{5^{12}-5}{5^{12}-1}=\frac{5^{12}-1-4}{5^{12}-1}=\frac{5^{12}-1}{5^{12}-1}-\frac{4}{5^{12}-1}=1-\frac{4}{5^{12}-1}\)

vì 513+1>512+1>512-1

=>\(\frac{4}{5^{12}-1}>\frac{4}{5^{12}+1}>\frac{4}{5^{13}+1}\)

\(\Rightarrow1+\frac{4}{5^{12}-1}>1+\frac{4}{5^{12}+1}>1+\frac{4}{5^{13}+1}\)

=>5C>5B>5A

=>C>B>A

3 tháng 3 2018

 2 hoặc 42

3 tháng 3 2018

Giải như mà mình không chắc nha:

a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)

Ta có:

  \(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)

\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)

Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......

b) Bạn giải tương tự nha! Lười lắm :v

20 tháng 2 2020

a) =-5/7 +7/8-2/7+1/8- -1/12+ -13/12

=(-5/7-2/7)+(7/8+1/8)-(-1/12--13/12)

=-7/7+8/8 - 12/12

= -1+1+1

=1

b)= ( -3/8+11/8)-(12/11+ -1/11)+(-3/5- 2/5)

= 1- 1 + (-1)

=-1

20 tháng 2 2020

dễ lắm ó

28 tháng 6 2016

công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

nên ta có :  \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}\)\(=\frac{5^{12}+5}{5^{13}+5}=\frac{5.\left(5^{11}+1\right)}{5.\left(5^{12}+1\right)}=\frac{5^{11}+1}{5^{12}+1}\)

=> \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{11}+1}{5^{12}+1}\)

28 tháng 6 2016

đặt A và B = 2 cái kia rồi nhân nó với 5 là đc

2 tháng 4 2018

\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)

\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)

\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)

\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)

\(\Rightarrow\)\(P< \frac{1}{16}\)

P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot

16 tháng 8 2018

Đạt BD

4 tháng 7 2020

Ta thấy : \(\frac{5}{11}>\frac{5}{12}>\frac{5}{13}>\frac{5}{14}\)

 \(S=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}< \frac{5}{11}\times4=\frac{20}{11}< 2\)  (1)

\(S=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}>\frac{5}{14}\times4=\frac{10}{7}>1\)   (2)

Từ (1) và (2) suy ra : \(1< S< 2\)  (ĐPCM)