Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{11}{12}:\frac{44}{16}\right).\left(\frac{-1}{3}+\frac{1}{2}\right)\) \(=\left(\frac{11}{12}.\frac{16}{44}\right).\left(\frac{-2}{6}+\frac{3}{6}\right)\) \(=\frac{1}{3}.\frac{1}{6}\) \(=\frac{1}{18}\)
b) \(\frac{\left(-5\right)^2.\left(-5\right)^3.16}{5^4.\left(-2\right)^4}\) \(=\frac{\left(-5\right)^5.2^4}{5^4.\left(-2\right)^4}\) \(=5\) (Có sửa đề lại, nếu có sai thì ib mình sửa lại nhé!)
c) \(7,5:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(\frac{-5}{3}\right)\) \(=\frac{15}{2}.\left(\frac{-3}{5}\right)+\frac{5}{2}.\left(\frac{-3}{5}\right)\) \(=\frac{-3}{5}.\left(\frac{15}{2}+\frac{5}{2}\right)\)
\(=\frac{-3}{5}.10\) \(=-6\)
d) \(\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right):\frac{5}{4}\) \(=\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right).\frac{4}{5}\)
\(=\frac{4}{5}.\left(\frac{-1}{2}+\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\) \(=\frac{4}{5}.\left(\frac{0}{2}+1\right)\) \(=\frac{4}{5}.1=\frac{4}{5}\)
a) (1112:4416).(−13+12)(1112:4416).(−13+12) =(1112.1644).(−26+36)=(1112.1644).(−26+36) =13.16=13.16 =118=118
b) (−5)2.(−5)3.1654.(−2)4(−5)2.(−5)3.1654.(−2)4 =(−5)5.2454.(−2)4=(−5)5.2454.(−2)4 =5=
c) 7,5:(−53)+212:(−53)7,5:(−53)+212:(−53) =152.(−35)+52.(−35)=152.(−35)+52.(−35) =−35.(152+52)=−35.(152+52)
=−35.10=−35.10 =−6=−6
d) (−12+13).45+(23+12):54(−12+13).45+(23+12):54 =(−12+13).45+(23+12).45=(−12+13).45+(23+12).45
=45.(−12+13+23+12)=45.(−12+13+23+12) =45.(02+1)=45.(02+1) =45.1=45
a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)
b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)
\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)
\(=66+44+33+22+12=177\)
c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)
= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)
= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)
= còn lại làm nốt nha! bận ròy
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
A = \(\frac{1}{2}\)x\(\frac{2}{3}.\)\(\frac{3}{4}....\)\(\frac{2003}{2004}\)
A = \(\frac{1}{2004}\)
P1 có 2 thừa số âm nhân với nhau nên P1 >0
P2 có 3 thừa số âm nhân với nhau nên P2 <0
P3 vì trong dấu ba chấm có thừa số 0/10 nên P3 =0
Vậy P2 < P3 < P1
KO khó lắm đâu. Mong bạn hiểu để bài sau tương tự thì làm được.
CHúc bạn học tốt.
\(a)\) \(427-98=329\)
\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)
\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)
\(=30\cdot19+30\cdot43+62\cdot80\)
\(=30\cdot\left(19+43\right)+62\cdot80\)
\(=30\cdot62+62\cdot80\)
\(=62\cdot\left(30+80\right)\)
\(=62\cdot110=6820\)
\(c)\) Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^6}\)
\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)
Vậy \(M=\frac{364}{729}\)
1. Ta có : \(MSC=BCNN(9,7)=63\)
Quy đồng : \(\frac{-4}{9}=\frac{-4\cdot7}{9\cdot7}=\frac{-28}{63}\)
\(\frac{-3}{7}=\frac{-3\cdot9}{7\cdot9}=\frac{-27}{63}\)
Mà \(\frac{-28}{63}< \frac{-27}{63}\). Vậy : \(\frac{-4}{9}< \frac{-3}{7}\)
2. Rút gọn :
a, \(\frac{48}{72}=\frac{48:24}{72:24}=\frac{2}{3}\)
b, \(\frac{-27\cdot16+16\cdot(-73)}{10^2}\)
\(=\frac{16\cdot(-27)+(-73)}{10^2}\)
\(=\frac{16\cdot(-100)}{10^2}=\frac{16\cdot(-100)}{100}=\frac{16\cdot(-1)}{1}=-16\)
1.
Ta có:
\(\frac{-4}{9}=\frac{-4.7}{9.7}=\frac{-28}{63}\)
\(\frac{-3}{7}=\frac{-3.9}{7.9}=\frac{-27}{63}\)
Vậy:
\(-28< -27\)
Nên:
\(\frac{-28}{63}< \frac{-27}{63}\)
\(\Rightarrow\frac{-4}{9}< \frac{-3}{7}\)