Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).
Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\), \(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\), \(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\), \(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)
\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)
\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)
Kiểm tra lại đề xem thừa số cuối có đúng quy luật của dãy không.
\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+\dfrac{1}{4}.\left(1+2+3+4\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)
\(B=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+\dfrac{1}{4}.4.5:2+...+\dfrac{1}{100}.100.101:2\)
\(B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}\)
\(B=\dfrac{2+3+4+...+101}{2}\)
Tự tính :v
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)
\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)
\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)
\(A=\dfrac{-1}{100}\)
Ta có
A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)
A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)
A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)
A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)
A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)
A = \(\dfrac{-1}{1}\)
A = -1
Vậy A = -1
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)