Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Câu 1: Đề bài sai, với điều kiện đề bài đã cho thì Q vẫn nguyên tại \(x=0\), đề bài đúng phải là \(\forall x>0\) thì Q không nguyên (ko hiểu sao lại có điều kiện \(x\ne4\) , cái này hoàn toàn ko ảnh hưởng gì tới bài toán)
\(A=Q^2=\frac{x+4\sqrt{x}+4}{x+4}\Leftrightarrow Ax+4A=x+4\sqrt{x}+4\)
\(\Leftrightarrow\left(A-1\right)x-4\sqrt{x}+4A-4=0\)
\(\Delta'=4-\left(4A-4\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow=-A^2+2A\ge0\Rightarrow0\le A\le2\Rightarrow A\le2\)
\(\Rightarrow Q\le\sqrt{2}< 2\)
Mặt khác ta có \(\sqrt{x}+2=\sqrt{x}+\sqrt{4}>\sqrt{x+4}\)
\(\Rightarrow Q=\frac{\sqrt{x}+2}{\sqrt{x+4}}>1\) \(\Rightarrow1< Q< 2\Rightarrow Q\) không thể nhận giá trị nguyên
Câu 2: ĐKXĐ: \(x\ge-2\)
a/ \(\Leftrightarrow4\left(x^2+2x+3\right)+3\left(x+2\right)=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\) ta được:
\(3a^2-8ab+4b^2=0\Leftrightarrow\left(a-2b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\3a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2+2x+3}\\3\sqrt{x+2}=2\sqrt{x^2+2x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2+7x+10=0\left(vn\right)\\4x^2-x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1\pm\sqrt{97}}{8}\)
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge7\\-5\le x\le-2\end{matrix}\right.\)
\(\Leftrightarrow3x^2-11x-22=7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}\)
\(\Leftrightarrow3\left(x^2-5x-14\right)+4\left(x+5\right)-7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-5x-14}=a\ge0\\\sqrt{x+5}=b\ge0\end{matrix}\right.\) ta được:
\(3a^2-7ab+4b^2=0\Leftrightarrow\left(a-b\right)\left(3a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-5x-14}=\sqrt{x+5}\\3\sqrt{x^2-5x-14}=4\sqrt{x+5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-19=0\\9x^2-61x-206=0\end{matrix}\right.\) \(\Rightarrow x=...\)
\(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)}\)
\(=\sqrt{2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{2}\)
2/ Để đồ thị hàm số cắt 2 trục tọa độ tại 2 điểm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\m\ne0\end{matrix}\right.\)
Gọi A là giao điểm của (d) với trục Ox \(\Rightarrow A\left(\frac{2m}{1-m};0\right)\)
\(\Rightarrow OA=\left|\frac{2m}{1-m}\right|=\left|\frac{2m}{m-1}\right|\)
Gọi B là giao điểm của (d) với Oy \(\Rightarrow B\left(0;2m\right)\Rightarrow OB=\left|2m\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=1\Leftrightarrow OA.OB=2\)
\(\Leftrightarrow\left|\frac{2m}{m-1}\right|.\left|2m\right|=2\Leftrightarrow2m^2=\left|m-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2m^2=m-1\\2m^2=1-m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m^2-m+1=0\left(vn\right)\\2m^2+m-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{1}{2}\end{matrix}\right.\)
3/
a/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)\left[\left(x+1\right)^2+2\right]\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)^3+2\left(x+1\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3+2a=b^3+2b\)
\(\Leftrightarrow a^3-b^3+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x+3}=x+1\) (\(x\ge-1\))
\(\Leftrightarrow x+3=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)