Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
\(\frac{-5^3\cdot40\cdot4^3}{135\cdot\left(-2\right)^{14}\left(-100\right)^0}=\frac{-125\cdot2^3\cdot5\cdot\left(2^2\right)^3}{5\cdot27\cdot2^{14}\cdot1}=\frac{-125\cdot2^6}{27\cdot2^{11}}=\frac{-125}{27\cdot2^5}=\frac{-125}{864}\)
\(\frac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)\(=\frac{\left(-5\right)^3.5.2^3.2^6}{3^3.5.2^{14}.1}\)\(=\frac{-125}{864}\)
\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\left(x-4\right).3=\left(y-3\right).4\)
\(3x-12=4y-12\)
\(\Leftrightarrow3x=4y\)
\(\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x-y}{\frac{1}{3}-\frac{1}{4}}=\frac{5}{\frac{1}{12}}=5.12=60\)
\(\Rightarrow\hept{\begin{cases}x=60.\frac{1}{3}=20\\y=60.\frac{1}{4}=15\end{cases}}\)
Vậy x = 20 ; y = 15
Toán lớp 6 Phân sốToán chứng minh
Nguyễn Triệu Yến Nhi 07/05/2015 lúc 16:44
a)
A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1
b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )
=> a2 + a - 1 chia hết cho d
a2 + a +1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
\(\frac{2^3.3}{2^2.3^2.5}=\frac{2}{3.5}=\frac{2}{15}\)
Thiếu dấu nhân ở chỗ \(2^2.3^2\)nha
Bài 1: Rút gọn các phân số sau đến tối giản:
a) \(\frac{49+7.49}{49}=\frac{49\left(1+7\right)}{49}=8\)
b) \(\frac{9.6-9.3}{18}=\frac{9\left(6-3\right)}{18}=\frac{27}{18}=\frac{3}{2}\)
c) \(\frac{17.5-17}{3-20}=\frac{17\left(5-1\right)}{-17}=\frac{68}{-17}=-4\)
Bài 2: Tính giá trị của biểu thức:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Bài 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác :
A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7(a + 6) = 17(b + 3) = 23(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
Nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên :
(A + 39) 7.17.23 hay (A + 39) 2737
Suy ra A + 39 = 2737.k suy ra A = 2737.k 39 = 2737(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737
a.\(\frac{2001.2002-1}{400.2002+4002}\)
\(=\frac{2000}{4000+4002}\)
\(=\frac{2000}{8002}=\frac{1000}{4001}\)
b.\(\frac{1999.2000-1}{1998.1999+3997}\)
\(=\frac{2000-1}{1998+3997}\)
\(=\frac{1999}{5995}\)
a) \(\frac{2001.2002-1}{2001.2002-1+1999.2002+4003}=\frac{2001.2002-1}{\left(2001.2002-1\right)+1999.2002+4004-1}\)
\(=\frac{2001.2002-1}{\left(2001.2002-1\right)+2002.\left(1999+2\right)-1}\)
\(=\frac{2001.2002-1}{\left(2001.2002-1\right)+2002.2001-1}=\frac{1.\left(2001.2002-1\right)}{\left(2001.2002-1\right).2}\)
= 1/2
b) \(\frac{1999.2000-1}{1998.1999+3997}=\frac{1999.2000-1}{1998.1999+3998-1}\)
\(=\frac{1999.2000-1}{1999.\left(1998+2\right)-1}=\frac{1999.2000-1}{1999.2000-1}=1\)