Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(A=4\sqrt{x}-\frac{(\sqrt{x}+3)^2(\sqrt{x}-3)}{x-9}=4\sqrt{x}-\frac{(\sqrt{x}+3)(x-9)}{x-9}=4\sqrt{x}-(\sqrt{x}+3)\)
\(=3\sqrt{x}-3\)
b)
\(B=\frac{\sqrt{9x^2+12x+4}}{3x+2}=\frac{\sqrt{(3x)^2+2.3x.2+2^2}}{3x+2}=\frac{\sqrt{(3x+2)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)
\(B=1\) nếu $x>\frac{-2}{3}$
$B=-1$ nếu $x< \frac{-2}{3}$
\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=y-x\)
\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)
\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)
\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)
\(=|\sqrt{x}^2-\sqrt{y}^2|\)
\(=|x-y|\)
Vì \(x\le y\)\(\Rightarrow x-y\ge0\)
\(\Rightarrow|x-y|=x-y\)
a) Đkxđ : \(\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)
A = \(\left(\frac{\sqrt{a}+3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
= \(\frac{2\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)
= \(\frac{2}{\sqrt{a}+3}\)
b) Để A > \(\frac{1}{2}\)
<=> \(\frac{2}{\sqrt{a}+3}>\frac{1}{2}\Leftrightarrow\frac{2}{\sqrt{a}+3}-\frac{1}{2}>0\)
<=> \(4-\sqrt{a}-3>0\Leftrightarrow1-\sqrt{a}>0\Leftrightarrow a< 1\)
Vậy để A >1/2 thì a <1
Bài Làm:
1, Tìm ĐKXĐ:
a, Để \(\sqrt{\frac{x^2+3}{3-2x}}\) có nghĩa thì: \(\frac{x^2+3}{3-2x}\ge0\)
Vì \(x^2+3>0\forall x\) nên \(3-2x\ge0\)
\(\Leftrightarrow x\le\frac{3}{2}\)
Vậy ...
b, Để \(\sqrt{\frac{-2}{x^3}}\) có nghĩa thì: \(\frac{-2}{x^3}\ge0\)
Vì \(-2< 0\) nên \(x^3\le0\Leftrightarrow x\le0\)
Vậy ...
c, Để \(\sqrt{x\left(x-2\right)}\) có nghĩa thì: \(x\left(x-2\right)\ge0\)
\(TH1:\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
\(TH2:\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\Leftrightarrow x\le0\)
\(\Leftrightarrow\) \(x\ge2\) hoặc \(x\le0\)
Vậy ...
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
\(\left\{\begin{matrix}-1\le x\le1\\2-\sqrt{1-x^2}\end{matrix}\right.\) \(\Rightarrow-1\le x\le1\) (*)
Đặt \(\left\{\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a^2+b^2=2\\a,b\ge0\end{matrix}\right.\)
A tồn tại mọi x thuộc (*)
\(A=\frac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\frac{\sqrt{\frac{a^2-2ab+b^2}{2}}\left(a+b\right)\left(a^2+b^2-ab\right)}{2-ab}\)
\(A=\frac{\frac{\sqrt{2}}{2}\sqrt{\left(a-b\right)^2}\left(a+b\right)\left(2-ab\right)}{\left(2-ab\right)}\) Vơi đk (I)\(A=\frac{\sqrt{2}}{2}!a-b!\left(a+b\right)\)
\(\left[\begin{matrix}\left\{\begin{matrix}a\ge b\Leftrightarrow0\le x\le1\\A=\frac{\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{\sqrt{2}}{2}x\end{matrix}\right.\\\left\{\begin{matrix}a< b\Leftrightarrow-1\le x< 0\\A=\frac{-\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{-\sqrt{2}}{2}x\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow A=\frac{\sqrt{2}}{2}!x!\) Với x thỏa mãn đk (*)
Kết luận viết thế này cho đẹp
\(A=\left\{\begin{matrix}!x!\le1\\\frac{\sqrt{2}}{2}!x!\end{matrix}\right.\)
1.\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}=\frac{\left(5+\sqrt{5}\right)\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
\(=\frac{25+10\sqrt{5}+5}{25-5}+\frac{25-10\sqrt{5}+5}{25-5}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{20}\)
\(=\frac{60}{20}=3\)
2.
a) \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
ĐK : x ≥ 0
<=> \(\sqrt{5x\cdot9}-2\sqrt{5x\cdot4}+2\sqrt{5x\cdot16}=21\)
<=> \(\sqrt{5x\cdot3^2}-2\sqrt{2^2\cdot5x}+2\sqrt{5x\cdot4^2}=21\)
<=> \(\left|3\right|\sqrt{5x}-2\cdot\left|2\right|\sqrt{5x}+2\cdot\left|4\right|\sqrt{5x}=21\)
<=> \(\sqrt{5x}\cdot\left(3-4+8\right)=21\)
<=> \(\sqrt{5x}\cdot7=21\)
<=> \(\sqrt{5x}=3\)
<=> \(5x=9\)
<=> \(x=\frac{9}{5}\left(tm\right)\)
ơ đang làm lại bấm " Gửi trả lời " ._.
2b) \(\sqrt{x^2-10x+25}=4\)
<=> \(\sqrt{\left(x-5\right)^2}=4\)
<=> \(\left|x-5\right|=4\)
<=> \(\orbr{\begin{cases}x-5=4\\x-5=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)
3. \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
ĐK : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\right)\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
a. \(\Rightarrow\sqrt{\frac{45x^3}{5x}}=\sqrt{9x^2}=3x\)
b. \(=3\left(2-x\right)\)