K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

\(C=\frac{3}{3a-1}\sqrt{5a\left(1-6a+9a^2\right)}=\frac{3}{3a-1}\sqrt{5a\left(1-3a\right)^2}=\frac{3}{3a-1}\sqrt{5a}\left(3a-1\right)\) (Vì a>1/3 nên 1-3a<0

\(=3\sqrt{5a}\)

10 tháng 8 2015

\(C=\frac{3}{3a-1}\cdot\sqrt{5a}l1-3al\)

   \(=\frac{3}{3a-1}\cdot\sqrt{5a}\cdot\left(3a-1\right)\)  ( vì a > 1/3)

     = \(3\sqrt{5a}\)

8 tháng 7 2023

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

19 tháng 7 2021

a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)

b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)

c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

19 tháng 7 2021

a) 5\(\sqrt{25a^2}\) - 25 với a < 0

= 5\(\sqrt{\left(5a\right)^2}\) - 25

= 5.\(\left|5a\right|\) - 25

= 5.-(5a) - 25 

= -25a - 25 Vì a < 0

b) \(\sqrt{49a^2}\) + 3a với a < 0

\(\sqrt{\left(7a\right)^2}\) + 3a

\(\left|7a\right|\) + 3a

= -7a + 3a Vì a < 0

= -4a

c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì

= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3

= 3\(\left|3a^3\right|\) - 6a3

= 9a3 - 6a3

= 3a3

 Chúc bạn học tốt

7 tháng 7 2021

\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)

\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)

\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)

Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)

\(=2\sqrt{x-4}\)

Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

 

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow1-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 1\)

hay x<1

Kết hợp ĐKXĐ, ta được: 0<x<1

b: B=căn 49a^2+3a

=|7a|+3a

=7a+3a(a>=0)

=10a

c: C=căn16a^4+6a^2

=4a^2+6a^2

=10a^2

d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)

TH1: a>=0

D=6a^3-6a^3=0

TH2: a<0

D=-6a^3-6a^3=-12a^3

e: \(E=3\sqrt{9a^6}-6a^3\)

\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)

=3*3a^3-6a^3(a>=0)

=3a^3

f: \(F=\sqrt{16a^{10}}+6a^5\)

\(=\sqrt{\left(4a^5\right)^2}+6a^5\)

=-4a^5+6a^5(a<=0)

=2a^5

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

NV
30 tháng 7 2021

\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)

\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)

\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)

\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)

\(A=\sqrt{\left(a-3\right)^2}-3a\)

=3-a-3a

=3-4a