Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, <=>y2-32 <=> y2 -9 (hằng đẳng thức số 3)
b, <=> m3+n3 ( hằng đẳng thức số 6)
c, <=> 23-a3 (__________________số 7)
d, <=> (a-b-c-a+b-c )( a-b-c+a-b+c)
<=> -2c*2a= -4ac
e, <=> (a-x-y-a-x+y) [(a-x-y) 2+(a-x-y)(a+x-y)+(a+x-y)2]
(Nhân phá ngoặc) -)
d <=> (1-x2)[(1+x2)2-x2)
<=> (1-x2)(1+2x2)
<=> 1+2x2-x2-2x4
<=> 1+x2-2x4
a: \(=y^2-9\)
b: \(=m^3+n^3\)
c: \(=8-a^3\)
d: \(=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)\)
\(=-2c\cdot\left(2a-2b\right)\)
\(=-4ac+4bc\)
f: \(=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
Cho biểu thức: bn viết ko rõ lắm , bn xem đề mk viết lại có đg ko nhé , r mk lm cho
\(a=\dfrac{2x}{x+3}-\dfrac{x+1}{3-x}-\dfrac{3-11x}{x^2-9}\)
Bài 1:
\(A=\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{2x}{x^2-y^2}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{4x^3}{x^4-y^4}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{8x^7}{x^8-y^8}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{16x^{15}}{x^{16}-y^{16}}\)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
b: \(\left(m+n\right)\times\left(m^2-mn+n^2\right)=m^3+n^3\)
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
Bài 2:
\(VT=\left(a-2\right)\left(a^2+2a+4\right)\left(a-1\right)\left(a^2+a+1\right)\)
\(=\left(a^3-8\right)\left(a^3-1\right)\)
\(=a^6-9a^3+8\)
Bài 3:
\(\Leftrightarrow x^3+8-x\left(x^2-9\right)=26\)
\(\Leftrightarrow x^3+8-x^3+9x=26\)
=>9x=18
hay x=2