K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{256}+1\right)\)

      \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)\)

      \(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)\)

      \(=\left(2^8-1\right)\left(2^8+1\right)....\left(2^{256}+1\right)\)

         .........................................................

        \(=\left(2^{256}-1\right)\left(2^{256}+1\right)\)

         \(=\left[\left(2^{256}\right)^2-1^2\right]\)

           \(=2^{512}-1\)

A=(2-1)(2+1)*...*(2^256+1)+1

=(2^2-1)(2^2+1)*...*(2^256+1)+1

=(2^4-1)(2^4+1)*...*(2^256+1)+1

=(2^8-1)(2^8+1)(2^16+1)(2^32+1)*....*(2^256+1)+1

=(2^16-1)(2^16+1)*....*(2^256+1)+1

=(2^32-1)(2^32+1)*...*(2^256+1)+1

=(2^64-1)(2^64+1)(2^128+1)(2^256+1)+1

=(2^128-1)(2^128+1)(2^256+1)+1

=(2^256-1)(2^256+1)+1

=2^512

15 tháng 5 2017

đặt A = (2 + 1)(22 + 1)...(2256 + 1).

khi đó (2 - 1)A = (2 -1)(2 + 1)(22 + 1)...(2256 + 1)

suy ra A = 2257 - 1 (dùng hiệu hai bình phương).

nên biểu thức đã cho là A + 1 = 2257.

11 tháng 8 2020

\(=\left(a^2-1\right)^3-\left(a^6-1\right)\)

\(=a^6-3a^4+3a^2-1-a^6+1\)

\(=-3a^4+3a^2\)

\(=-3a^2\left(a^2-1\right)\)

3 tháng 6 2018

A = ( 2 + 1 )( 22 + 1 )...( 2256 + 1 ) + 1

A = ( 2 - 1 )( 2 + 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 ) + 1

A = ( 22 - 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 ) + 1

A =( 24 - 1 ) ( 24 + 1 )...( 2256 + 1 ) + 1

A = ( 2256 - 1 )( 2256 + 1 ) + 1

A = 2512

12 tháng 1 2019

a) Đề sai nha bạn :) mấy dấu cộng bạn phỉa chuyển thành dấu nhân nhé

\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)

\(A=2^{512}-1+1\)

\(A=2^{512}\)

12 tháng 1 2019

b . ( 5x - 3y + 4z )( 5x - 3y - 4z ) = ( 5x - 3y )^2 - ( 4z )^2 = 25x^2 - 30xy + 9y^2 - 16z^2 = 25( y^2 + z^2 ) - 30xy + 9y^2 - 16z^2 = 9z^2 + 34y^2 - 30xy ( 1 )

      ( 3x - 5y )^2 = 9x^2 - 30xy + 25y^2 = 9( y^2 + z^2 ) - 30xy + 25y^2 = 34y^2 + 9z^2 - 30xy ( 2 )

Tu ( 1 ) va ( 2 ) => dpcm

1 tháng 10 2017

bạn ơi!! 2+1 chứ, bn xem lại đề cấy

Đặt A=3(22 +1)(24+1)(28+1)(216+1)

=(4-1)(2^2+1)(2^4+1)(28+1)(2^16+1)

=[(2^2-1)(2^2+1)](2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)

Theo mình ý a bn làm đc

27 tháng 2 2015

A = (22 - 1) (22 +1)(24 +1)...(264 +1) + 1 = (24 - 1)(24 +1)...(264 +1) + 1  = (28 -1)...(264 +1) + 1 = 2128 -1 + 1 = 2128

11 tháng 12 2020

Bài 1 : 

\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)

\(=x^2-4x+4-x+9=x^2-5x+13\)

Bài 2 : 

a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)

\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)

b, Thay x = -4 ta được : 

\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)