K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(E=1+1=2\)

b: \(=6+3\sqrt{5}+\sqrt{6}-\sqrt{2}+\sqrt{6}-\sqrt{5}\)

\(=6+2\sqrt{6}-\sqrt{2}+2\sqrt{5}\)

d: \(=2+\sqrt{3}+2-\sqrt{3}=4\)

5 tháng 12 2019

\(a)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\)

\(=\frac{24}{2}\)

\(=12\)

\(b)\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\left(2+\sqrt{8}-\sqrt{6}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{2}+2-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\sqrt{2}\)

\(c)A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-3}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{44\left(2-\sqrt{3}\right)}{22}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{2\left(2-\sqrt{3}\right)}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)

\(A=3-1=2\)

P/s: nếu đề là vậy thì t ra kết quả như vậy ạ, nhưng lần sau khi đăng câu hỏi bạn nên viết rõ hơn ra nhé

a: \(=3\cdot7\sqrt{3}+2\cdot6\sqrt{3}-4\cdot4\sqrt{3}-11\sqrt{3}\)

\(=21\sqrt{3}+12\sqrt{3}-16\sqrt{3}-11\sqrt{3}\)

\(=6\sqrt{3}\)

b: \(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=3-\sqrt{5}+\sqrt{5}-1\)

=2

c: \(=\left(4-\sqrt{3}\right)\sqrt{\left(4+\sqrt{3}\right)^2}\)

\(=\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)\)

=16-3

=13

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

13 tháng 6 2018

Giải:

a) \(5\sqrt{\left(-2\right)^4}\)

\(=5\sqrt{2^4}\)

\(=5\sqrt{\left(2^2\right)^2}\)

\(=5.2^2\)

\(=20\)

b) \(-4\sqrt{\left(-3\right)^6}\)

\(=-4\sqrt{3^6}\)

\(=-4\sqrt{\left(3^3\right)^2}\)

\(=-4.3^3\)

\(=-108\)

c) \(\sqrt{\sqrt{\left(-5\right)^8}}\)

\(=\sqrt{\sqrt{5^8}}\)

\(=\sqrt{\sqrt{\left(5^4\right)^2}}\)

\(=\sqrt{5^4}\)

\(=5^2=25\)

d) \(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)

\(=2\sqrt{5^6}+3\sqrt{2^8}\)

\(=2.5^3+3.2^4\)

\(=250+48\)

\(=298\)

Vậy ...

a: \(=-6\sqrt{b}-\dfrac{1}{3}\cdot3\sqrt{3b}+\dfrac{1}{5}\cdot5\sqrt{6b}\)

\(=-6\sqrt{b}-\sqrt{3}\cdot\sqrt{b}+\sqrt{6}\cdot\sqrt{b}\)

\(=\sqrt{b}\left(-6-\sqrt{3}+\sqrt{6}\right)\)

c: \(=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)

d: \(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

e: \(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)

\(=\sqrt{6+2\cdot\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

NV
7 tháng 4 2019

a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)

\(A=5\sqrt{6}-10\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)

Đến đây ko rút gọn được nữa, nhưng nếu đề là:

\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)

c/

\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)

NV
7 tháng 4 2019

\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)

\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)

\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))

\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)

\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)

\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)

\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)

\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)

\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)

\(\Rightarrow G=2\)