Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)
2.
\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Suy ra đpcm
Bổ sung điều kiện câu b: n chẵn và n>4
\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)
Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
Dài Vãi mik ko bít giải phhương trình sorry nha
Bài 1:
Để căn thức có nghĩa thì:
a)
\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)
b)
\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)
c) \(\frac{x+3}{5-x}\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow -3\leq x< 5\)
d) \(-x^2+4x-4\geq 0\)
\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x=2\)
Bài 1 làm rồi, và bài 4 chỉ làm được khi đề yêu cầu tìm số nguyên tố, còn số nguyên thì pt có vô số nghiệm
2/ \(T=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x.cos^2x+\frac{sin^2x}{cos^2x}.cos^2x+\frac{cos^2x}{sin^2x}.sin^2x\)
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x+sin^2x+cos^2x\)
\(=1^3-3sin^2x.cos^2x.1+3sin^2x.cos^2x+1\)
\(=2\)
3/ Trước hết ta có BĐT sau với số dương:
\(x^3+y^3\ge xy\left(x+y\right)\)
Thật vậy, BĐT tương đương:
\(x^3-x^2y-\left(xy^2-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Kết hợp với BĐT \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Rightarrow B\ge ab\left(a+b\right)+4\left(a^2+b^2\right)^2+\frac{2}{ab}\)
\(B\ge ab+\frac{1}{16ab}+4\left(\frac{\left(a+b\right)^2}{2}\right)^2+\frac{31}{16ab}\)
\(B\ge2\sqrt{\frac{ab}{16ab}}+4\left(\frac{1}{2}\right)^2+\frac{31}{4\left(a+b\right)^2}=\frac{1}{2}+1+\frac{31}{4}=\frac{37}{4}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Bài 1:
c: \(=\left(x^2+3x+1\right)^2\)